Focus on:
All sessions
Round Table
Hide Contributions
Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Ciudad_Juarez
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Madrid
English (United Kingdom)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Italiano (Italia)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Čeština (Česko)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
ALBA II - Workshop on APXPS
Thursday, 9 September 2021 -
10:15
Monday, 6 September 2021
Tuesday, 7 September 2021
Wednesday, 8 September 2021
Thursday, 9 September 2021
10:15
Introduction
-
Klaus Attenkofer
Introduction
Klaus Attenkofer
10:15 - 10:30
10:30
Aqueous Solution-Vapor Interfaces Investigated with Ambient Pressure X-ray Photoelectron Spectroscopy
-
Hendrik Bluhm
(
Fritz Haber Institute of the Max Planck Society, Department of Inorganic Chemistry
)
Aqueous Solution-Vapor Interfaces Investigated with Ambient Pressure X-ray Photoelectron Spectroscopy
Hendrik Bluhm
(
Fritz Haber Institute of the Max Planck Society, Department of Inorganic Chemistry
)
10:30 - 11:00
Aqueous solution-vapor interfaces govern important phenomena in the environment and atmosphere, including the uptake and release of trace gases by aerosols and CO2 sequestration by the oceans.[1] A detailed understanding of these processes requires the investigation of liquid-vapor interfaces with chemical sensitivity and interface specificity under ambient conditions, i.e., temperatures above 270 K and water vapour pressures in the millibar to tens of millibar pressure range. This talk will discuss opportunities and challenges for investigations of liquid-vapor interfaces using X-ray photoelectron spectroscopy and describe some recent experiments that have focused on the propensity of certain ions and the role of surfactants at the liquid/vapor interface. [1] O. Björneholm et al., Chem. Rev. 116, 7698 (2016).
11:00
In Situ Characterization of Electrocatalysis at Electrified Interfaces
-
Zhi Liu
(
Center for Transformative Science, ShanghaiTech University and School of Physical Science and Technology, ShanghaiTech University
)
In Situ Characterization of Electrocatalysis at Electrified Interfaces
Zhi Liu
(
Center for Transformative Science, ShanghaiTech University and School of Physical Science and Technology, ShanghaiTech University
)
11:00 - 11:30
Studying electrochemical reactions at interfaces between different states of matter has been a long-term interest for both experimentalists and theorists in wide-range research areas. Revealing the fundamental properties at such interfaces is critical for a complete description of relevant electrochemical processes and for future designs of advance materials. In this talk, we will present a brief review on our in situ investigations at electrified interfaces, including gas/solid interface of solid oxide electrochemical cells and liquid/solid interface of magnesium rechargeable batteries. 【1, 2】 These examples highlight the importance of studying “living” interfaces in a dynamic environment and the value of correlative in situ methods. 【3】 We will discuss our beamline at Shanghai Synchrotron Radiation Facility, which allows in situ studies at pressures up to 20 mbar with high spatial resolution. We will also share recent progress on our lab-based system dedicated for in situ investigations of liquid/solid interfaces. Other new experimental methods will be briefly discussed as well. References: [1] Zhang, C.; Yu, Y.; Grass, M. E.; Dejoie, C.; Ding, W.; Gaskell, K.; Jabeen, N.; Hong, Y. P.; Shavorskiy, A.; Bluhm, H.; Li, W. X.; Jackson, G. S.; Hussain, Z.; Liu, Z.; Eichhorn, B. W., J Am Chem Soc 2013, 135, 11572. [2] Yu, Y.; Baskin, A.; Valero-Vidal, C.; Hahn, N. T.; Liu, Q.; Zavadil, K. R.; Eichhorn, B. W.; Prendergast, D.; Crumlin, E. J., Chemistry of Materials 2017, 29, 8504. [3] Han, Y.; Zhang, H.; Yu, Y.; Liu, Z., ACS Catal. 2021, 11, 1464.
11:30
Break
Break
11:30 - 12:00
12:00
Dynamic Nanocatalysts: Environmental Effects
-
Beatriz Roldán Cuenya
(
Department of Interface Science, Fritz-Haber Institute of the Max Planck Society
)
Dynamic Nanocatalysts: Environmental Effects
Beatriz Roldán Cuenya
(
Department of Interface Science, Fritz-Haber Institute of the Max Planck Society
)
12:00 - 12:30
In order to comprehend the catalytic performance of metal nanostructures, their dynamic nature and response to the environment must be taken into consideration. The working state of a nanocatalyst might not be the state in which the catalyst was prepared, but a structural and/or chemical isomer that adapted to the particular reaction conditions. Furthermore, deactivation phenomena taking place under reaction conditions can only be understood, and ultimately prevented, if sufficient information is available on the catalyst morphology, structure, chemical state, and surface composition while at work. I will first describe novel approaches for the synthesis of size- and shape-controlled nanoparticle catalysts (Cu2O, Cu, Cu-M (M=Zn, Ni, Ga), NiGa and FeOx NPs). Subsequently, I will illustrate how to follow the evolution of their morphology and surface composition under different gaseous and liquid environments in the course of a catalytic reaction. Examples will be given regarding the dynamic transformations of the former nanocatalysts during the hydrogenation and the electrochemical reduction of CO2 via NAP-XPS and other complementary techniques such as XAS, or NAP-STM. Emphasis will be given to elucidating the role of the nanoparticle size, shape, composition, chemical state and support of the catalysts in their activity, selectivity and durability.
12:30
Time-resolved and event-averaged ambient pressure x-ray photoelectron spectroscopy: A new methodology for stroboscopic vision of dynamic catalyst surfaces at work
-
Jan Knudsen
Time-resolved and event-averaged ambient pressure x-ray photoelectron spectroscopy: A new methodology for stroboscopic vision of dynamic catalyst surfaces at work
Jan Knudsen
12:30 - 13:00
13:00
Break
Break
13:00 - 14:30
14:30
Evaluation of the impact of the in situ cell design on the interfacial speciation over C-based electrodes during room temperature CO2 electroreduction
-
Rosa Arrigo
Evaluation of the impact of the in situ cell design on the interfacial speciation over C-based electrodes during room temperature CO2 electroreduction
Rosa Arrigo
14:30 - 15:00
Electrochemically or photo-electrochemically activated, hydrogenation and dehydrogenation reactions of small molecules (e. g. H2O, CO2, O2, N2) are at the core of currently explored decarbonization technologies. These technologies are key to delivering net zero emissions. The major challenges to face for boosting innovation in this area are common to these reactions: reducing material costs; improving the energy efficiencies to practical levels and reducing material degradation during operation. The understanding of the underlying mechanisms, including restructuring and compositional change of the electrode surface upon polarization, activation, and deactivation is acknowledged to guide towards the synthesis of improved materials. This knowledge can be obtained with highest resolution of chemical states via surface-sensitive in situ spectroscopic techniques such as ambient pressure X-ray photoelectron and absorption spectroscopies that investigate the electronic structure at surfaces and interfaces. However, there are technical challenges to overcome for the realization of electron detection-based in situ studies of liquid/solid electrified interfaces: the inelastic mean free path of electron and the high absorption cross section in the soft X-ray regime limit the analysis to thin liquid films wetting the electrode surface. In the last decade progress in this field has been gigantic and different approaches have been proposed, amongst which the suitability of electron-transparent graphene membrane to separate the liquid environment from the vacuum chamber has been the focus of recent investigations carried out in collaboration with the beamline research team at the ISISS beamline of the synchrotron facility BESSY II at Berlin. In this contribution, I will focus on PEM-based systems to study the electrocatalytic conversion of CO2 to valuable products over carbon-based electrodes. I will describe the technical aspects of the various cell designs used, spanning different pressure ranges, from a humidified gas/solid interface [1] to a stagnant liquid film/solid interface [2]. I will compare the surface dynamics observed for chemical equivalent electrode systems in the different cell configurations, including the results obtained using a fluorescence yield based continuous flow cell. [3] Supporting literature: [1] V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, R. Schlögl, In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces, Chem. Sci., 2017, DOI: 10.1039/C6SC04622C. [2] J. Velasco-Vélez, E. Carbonio, C.-H. Chuang, C.-J. Hsu, J.-F. Lee, R. Arrigo, M. Hävecker, R. Wang, M. Plodinec, A. Centeno, A. Zurutuza, L. Falling, R. Mom, S. Hofmann, R. Schlögl, A. Knop-Gericke, T. Jones, Surface constrained electron-hole rich species active in the electrocatalytic water splitting, https://orcid.org/0000-0002-6595-0168. [3] J.-J. Velasco-Vélez, C.-H. Chuang, D. Gao, Q. Zhu, D. Ivanov, H. Sang Jeon, R. Arrigo, R. V. Mom, E. Stotz, H.-L. Wu, T. E. Jones, B. Roldan Cuenya, A. Knop-Gericke, R. Schlögl, On the Activity/Selectivity and Phase Stability of Thermally Grown Copper Oxides during the Electrocatalytic Reduction of CO2, ACS Catalysis 2020 10 (19), 11510-11518.
15:00
Nanomaterials under Operando Conditions
-
Dario Stacchiola
Nanomaterials under Operando Conditions
Dario Stacchiola
15:00 - 15:30
Our group focuses on the development and application of state-of-the-art capabilities to synthesize and study functional surfaces and interfaces. In our research program, we emphasize the use of oxide and nanoporous ultrathin films such as 2D zeolites and metal organic frameworks (MOFs) to stabilize well-defined catalytic structures targeting the capture and conversion of small chemicals. I will present case studies showing how complementary in situ techniques including ambient pressure (AP) X-ray photoelectron spectroscopy (AP-XPS), infrared reflection absorption spectroscopy (AP-IRRAS) and AP-STM can be applied to study heterogeneous interfaces in model catalysts. -"Enhanced Catalysis under 2D Silica: A CO Oxidation Study" Angew. Chem. Int. Ed., 60, 10888-10894 (2021) -"Multi-modal surface analysis of porous films under operando conditions" AIP Adv. 10, 085109 (2020) -"Tuning the Properties of Copper-Based Catalysts Based on Molecular in Situ Studies of Model Systems" Acc. Chem. Res. 48, 2151–2158 (2015)
15:30
XPS above atmospheric pressure at POLARIS
-
Christopher Goodwin
XPS above atmospheric pressure at POLARIS
Christopher Goodwin
15:30 - 16:00
While many processes have been proposed to address climate change, from reducing the need for fossil fuels to changing the source of electricity, only one process can genuinely resolve the build-up of CO2 in the air: to synthesize fuel from the air. While a daunting task at the turn of the 20th century, the Haber-Bosch process accomplished a similar feat, converting nitrogen in the air to liquid ammonia for fertilizer. Today we require new tools to achieve more detailed knowledge of complex reactions on the relevant catalyst surfaces. To this end, POLARIS, the first high-pressure XPS, has been built. To measure the surfaces of catalysts at pressures over one atmosphere, we have made many technologic advances, discovering new and rediscovering old problems. Since the installation of POLARIS at DESY in 2017, many experiments have taken place including, CO oxidation, methane oxidation, CO reduction, CO2 reduction, and N2 reduction. To reach the pressures required for these and other reactions, major shifts from conventional ambient pressure XPS are needed: 1. The aperture to the analyzer and the gap between the sample and aperture must be reduced to the micron scale to reduce scattering. 2. High energy x-rays must be used to reduce x-ray attenuation and provide enough kinetic energy for electrons to penetrate the gas. 3. Most importantly, the gas needs to flow from the analyzer to the chamber forming a virtual gas cell resulting in a much larger volume of gas required. By incorporating these innovations, it is possible to measure XPS spectra at pressures over one bar. While the above process provides a framework, numerous other challenges arise, for instance, the lost surface sensitivity due to hard x-rays or the imprecise nature of maintaining micron-sized gaps between materials. Despite challenges, POLARIS has become a reliable tool for measuring the surface of catalysts in situ, providing the first look at the atomic species present during the most important catalytic reactions. Ambient pressure XPS was first developed within years of the first XPS and had been limited to the millibar pressure range until POLARIS. At the core, POLARIS operates under the same process as all XPS; by using monochromatic x-rays of known energy to emit electrons, measure the kinetic energy and calculate the binding energy. Many adaptations needed to be made to build the high-pressure XPS, from determining the materials that can withstand the corrosive environment to designing a process to maintain a constant gap between the sample and aperture. Along with the development of the virtual gas cell, there are needed advances to the light source. Besides higher photon energies, highly focused light is required. The myriad problems and unique solutions have made POLARIS a complex yet highly exceptional instrument to measure XPS spectra approaching industrial pressures.
16:00
16:00 - 16:30