

Tango based data archiving for the CALA high power laser facility

Leonard Doyle(*), Max Gilljohann, Jens Hartmann, Johannes Gebhard, Felix Balling, Nils Weisse, Andreas Münzer, Andreas Döpp

Prof. Dr. Jörg Schreiber, Prof. Dr. Stefan Karsch

(*) leonard.doyle@physik.uni-muenchen.de

CALA and the ATLAS-3000 laser

- Centre for Advanced Laser Applications in Garching near Munich, Germany
- ATLAS-3000
 - Petawatt class laser, 1Hz repetition rate
 - operational since 2017, PW in 2022?
- Experimental areas for
 - Laser ion acceleration (protons, carbon, gold)
 - Laser electron acceleration (LWFA, hybrid schemes)
 - Xray source (Thomson backscattering, ...)
- Run by university, no user facility
- "student run" = limited number of technicians, ...

DWIG-AXIMILIANS-IIVERSITÄT ÜNCHEN

Tango system in CALA

Hardware control

- Motion (Phytron Phymotion, PI Hexapods, Owis, Thorlabs, ...)
- Dazzler, Arduino, Picoscope ...more to come (cameras,...)
- Amplitude laser controllers (Masterpulse, Genpulse)
- (Thales amplifier already based on Tango)
- Automatic Shotlog/ data archiving
 - Save important data for each shot
- Ongoing addition
 - Shotlog and monitoring of laser parameters
- Longterm addition
 - Automated optimization of parameters

Praise to PyTango

- Python generally used by many students/researchers in other contexts
- No compilation
 - Less platform dependent
 - easier to hotfix
- Less error prone (memory leaks, pointers, ...)
- Deployment == git clone, git pull
- PyTango high level API very nice
- Interop with evaluation scripts, existing GUIs, ...

Archiving System

Requirements

- **Goal:** Automated shotlog, make writing of labbook easier, quicker, less error prone
- Trigger with laser shot (single shot up to 1Hz)
- Master:
 - save shotnumber, timestamp, user parameters (target type, manual comments, ...)
- Motors, vacuum gauge, ...:
 - save position/pressure/... (+state)
- Cameras, picoscope, ...:
 - set filename, arm trigger, then save on hardware trigger
- After beam time:
 - easily readable by inexperienced user/student

Implementation

- File based approach
 - Folder for each beam time, subfolder for each device
 - Text files (shot log, motors, energy meter, ...)
 - Data files (camera, oscilloscope, ...)
- Why not HDB++??
- KISS
- Data extraction easy/ not requiring expert knowledge/ custom tools
- Heterogeneous equipment
 - "hybrid devices" not Tango-aware but using Tango shot number
- However: Long term performance limit??

Archiving system: Implementation details

ExperimentControlServer

```
Tango attributes:
ArchShotNumber (event)
ArchShotTime
ArchPath
ArchSubscribers

Tango commands:
SingleShot():
    #increase ShotNo
    #grp_subscribers.
    cmd_asynch(`Archive`)
    #push_event(`ArchShotNumber`)
    #save own shotlog.txt
    #fire laser
Subscribe()
```

PhymotionMotor :ArchivingDevice private ShotEvent(): #read position + state from HW #save .txt Tango attributes (inherited): ArchShotNumer ArchPath, ... Tango commands (inherited): Archive([ShotNo, ShotTime, ...]): #inherited #update self attributes #self.ShotEvent() device specific attributes, commands,

- Master: ExperimentControlServer
 - keep track of ShotNumber
 - trigger archiving
 - trigger laser shot
- Archiving devices:
 - inherit from `ArchivingDevice`
 - simply override private (non-Tango) `ShotEvent()`
 - e.g.
 self.archiver.savetxt(se
 lf.__position,
 self.state())
- Hybrid devices:
 - DeviceProxy, not DeviceServer
 - subscribes to `data_ready_event` on ShotNumber
 - fetches others (timestamp, path, ...) by attributes

14.09.2021

Unsubscribe()

Archiving system: File structure

- Global folder (network share)
 - /project/cala_lion/Experiments
 - similar for other caves, laser
- Subfolder/filename for each device
 - `ExperimentPath/ArchDevicePath/ArchDeviceName`
 - `ExperimentPath` = 20210831
 - ArchDevicePath = property
 - `automatic` → `hexapod` for `lion/hexapod/target`
 - ArchDeviceName = property
 - `automatic` → `target.txt` for `lion/hexapod/target`
- Future project: Python module to pull together all data for a specific shot

project/cala lion/Experiments/20210831 expcontrol └─ main.txt hexapod oap.txt target.txt IncomingEnergymeter PM100USB.txt - motor air-RCF-y.txt air-szinti-x.txt air-vertical.txt blocksh1.txt buncher-x.txt buncher-y.txt buncher-z.txt etalon-focus.txt lin-aperture.txt lin-dipole-slit.txt lin-dipole.txt lin-mic-X.txt lin-mic-7.txt lin-radeve-ch4.txt

20210831/vacuum/tpg.txt

//lion/vacuum/tpg								
ShotTime	Shot	Run	Flag:	s Write	eTime	Senso	rState	Pressure
20210831 160900749	9 1	0	N :	20210831	1609009	945 T	rue	3.13e-06
20210831 212506655	5 3	0	:	20210831	2125077	777 Т	rue	2.76e-06
20210831_215736752	2 4	0	:	20210831	2157378	308 Т	rue	2.71e-06
20210831 215821948	3 5	0	:	20210831	2158229	965 T	rue	2.71e-06
20210831_215837011	L 6	0	:	20210831	2158381	157 Т	rue	2.71e-06
20210831 220016177	7 7	0	:	20210831	2200173	319 Т	rue	2.71e-06
20210831_220025913	8	0	:	20210831	2200270	060 Т	rue	2.71e-06
20210831 220042187	7 9	0	:	20210831	2200432	218 Т	rue	2.71e-06
20210831 220051880	10	0		20210831 ⁻	2200529	926 T	rue	2.71e-06

VIG-IMILIANS-ERSITÄT

Conclusion

- Introduced ATLAS-3000 in the Centre for Advanced Laser Applications near Munich
- Details on archiving system
 - file based, on shot (max 1Hz)
 - still under development (no feedback if saving succeeded)
 - future performance problems?
- Interested in community experience
 - with on-shot/triggered archiving
 - with "inexperienced users"/ keeping the learning curve flat/ maintaining a system at limited resources

https://www.cala-laser.de/ https://www.pulse.physik.uni-muenchen.de/

