Chemically Biased Intro to
The Density Functional Theory

Introduction to Molecular Modeling




@ Hartree-Fock method is variational search for the best approximation
to the unknown, N-electron wavefunction in a form of Slater
determinant made of N 1-electron wavefunction called spinorbitals.
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Talk in 3 Slides (2)

Minimization of <'P SD‘IA{e 'PSD>Ieads to set of N 1-el. (pseudoeigenvalue)
Fock equations, which must be solved iteratively — Self Consistent
Field (SCF) procedure.

To make Fock equations solvable in practice, one has to expand SO in
certain known, finite, thus incomplete basis set. The quality of HF &
post-HF results depends on the type & size of the basis functions.

Byproduct of HF is set of 1-el. spinorbitals (SO), they & their
eigenvalues should be interpreted with caution.

HF predicts pretty good geometries & IR fregs. at least for closed shell
molecules. Energetics (AE of chemical reaction, electronic excitations)
are not so good, often very bad.

Why? HF method is mean field approximation, namely each electron
intferacts with the average electric field created by (N-1) remaining

electrons. But electrons should interacts one with another, not by mean
field.



ous Talk in 3 Slides (3)

HF method correctly describes, due fo the antisymmetric form of SD,
exchange correlation, i. e. between el. of the same spin.

Coulomb correlation is missing, due to the mean field treatment of e-e
interactions.

Correlation Energy E__=E___ - E <O, large fraction of measurable AE.

exact

Coulomb correlation can be roughly divided into (i) dynamical - el. move
in a way to avoid each other, (ii) static - when N-el. WF can't be approx.

by one SD. =3 o
! NG NN

Configuration Interaction method: the exact N-el. WF is represented as
a linear combination of many SD.

In practice full CT can be done for very small molecules (~ 10 electrons)
& many approx. to it were developed. They are still computationally
expensive and/or suffer from certain limitations. E. g. MP2 method can
be applied tfo moderate systems of ~100 electrons, but it describes
dynamical correlation only.



Wavefunction (WF) based methods
Density Functional Theory up to ~10° - 10° atoms

Semiempirical/Tight Binding methods

Molecular Mechanics
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@ Functional is a F[f] function, which arguments are functions & the values
are number's e. g. arc length connecting (x.y,) & (x,.y,)

LI f]= f\/1+f (x) dx
with domain {f}: f(x,)=y, & f(x,)=y,, has minimum / (x)= iz—if

4 FuncTuonaI is local, if f(x) for each x contributes independently to F, e. g.

ff

(X_XJ

o’rherwuse is nonlocal, e. g f £ (x)"dx
S f(y)dvdy, H[f]=2
X1 Vi n
@ In QM mean E is functional of ¥ ff (x)" dx

Ew)=w|a|w)= [w (x)AW (x)dx



p(r)= NZI ‘lp(‘11,Q2‘13---QN>‘2d"2d"3---d”N: x=(r,o)

E<'P|,f)|’P> ﬁ=iz5("—")

i=1 o,
p(r)=0 A for finite systems: p(r—ow)=0 A f p(r)dr=N

all space

p(r) is much nicer creature than ¥ - it lives in our 3D physical space,
instead of 4N spin-position space & is observable, can be "seen” in

diffraction experiments.
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@ Tdea to represent E (or its part) as a functional of electron density p(r)
is almost as old as Schrddinger equation (1926).

@ Thomas-Fermi model for homogeneous electron gas (1927)

E.. = CTFf,O(r)SBdr—I—f vext(r)p(r)dr—l—ff 'O(rlzp(rz)a’rla’r2

TTF interaction with classical Coulomb

external potential energy

@ + Dirac therm for exchange energy (lowering of effective repulsion
between el. of the same spin due to Pauli exclusion) KDocf p(r)4/3d r

@ TF model has some success in (qualitative) atomic & solid state physics,
but it fails to describe chemical bondmg

I|VP L.

@ von Weizsdcker correction to TTF

(r)

gives qualitative description of chemical bonds but results still not
Impressive.

@ Generally, it's hard to find a robust expression for T[p].



ee-Fock Easier

@ Xa method (Slater 1951):
N

A

f(l)xa(l)=[ (1)+2(F,(1)-K,(1))

b#a

Xl(1)

Xb(2)>:f p(”lz) dr,

Z, . 1

Jb<1>=<xb<z> 1

h(1)=—;—V2(1)+ZI: 25T

z‘rb<1>xa<1>=<xb<z> Bl

Fi,

Vi, r

1

Xa(2)>Xb(1) - I?SlaterzconSt.aJ‘p(rl)gdrl

a€(2/3,1)

@ Xa method gives HF quality results (or worse), but is much faster

computationally (~K* exchange integrals avoided). It was quite popular in

computational physics & chemistry in 60's-80's, including modeling of
solids or medium size molecules.



enberg-Kohn Theorems

@ But it was until 1964, when the use of density functionals was legalized:

- HK1 External* potential is uniquely determined (up to additive
constant) by the ground state density of particles.
pi(r) # py(r) = v (r) #v,(r)(+const)

Consequently p(r) determines ¥__, thus E & any observabla.

plr) = vy lr) = ¥(r.o)

*External means not coming from considered particles, like nuclear potential for
electrons in molecules & solids.

- HK2 If E [p] is functional dependence of E on p for a given external
potential v, then for any N-particle trial density:
Ev[ptrial] = Ev[pexact] — EGS
(due to Ritz-Rayleigh variational principle for ¥ & because ¥Y=Y[p]).

@ Tnitial HK proof was only for special class of p, but it was extended to
more general cases soon.
Hohenberg & Kohn Phys. Rev. 1964, 136, B864. Lieb & Levy PNAS 1979, 76, 6062.



MWr‘g-Kohn Theorems

The consequence singularity of Coulomb potential in the position of point
charge, el. density obeys Kato's cusp condition

: 1 op(r)
lim
r - R, p(r) or
@ Furthermore f,o(r)der

@ Knowing p(r) we know no. of electrons, positions & charges of nuclei, thus
we know full (nonrelativistic, Born-Oppenheimer approx.) H.

= —Z,

O Wilson JCP 1962, 36, 2232.

7)\
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Fig. after Jacobsen & Cavallo "Directions For Use DFT..." in "Handbook of Computational
Chemistry Vol. 1" Springer, 2012.



@ HK proofs are existence theorems, they say nothing about finding E[p].

@ Kohn-Sham idea: consider fictional system of N noninteracting fermions
(kohnshamions?) in certain external v (r) & having the same p(r) as the

real system of N interacting electrons. Kohn & Sham Phys. Rev. 1965, 140, A1133.

= Yhir) = X5 Vv r)

h(r)e®(q) = ¢ S(q,-), (q.=(r,.0)))
ZZ\CP )\ Pl ¥), W, =det[@(q,), 0,(q,)..... 0\ (qy)]

E,= Ze“—< v, )=1[pl+v.[p]

@ T of noint. particles is exactly T _Z Cﬁl __Vz ( )>
@ The existence of v(r) producing p =p, has not been proved in general,

but it was for many specific cases & no counterexample was found.
Due to HK1 if v (r) exists for given p, it is unique.



r'gy (& Potential)

E. . lpl = Tlpl+V . Ipl+V [l =  (r, =i
T, p] Jp] Vel O]
=z<¢i<1>\—;—v 1>>+f MLy i f o (0)p(1dr,+
+EXC[10(1)]

@ E [p] covers all parts of T & V_ which are not (1) kinetic energy of
nhonint. fermions T [p] & (2) classical Coulomb energy J[p].

@ T [p], being the largest part of T[p], can be calc. exactly as T [o].

@ It canbe shown that our wanted v (r) is:

our, _OE [p(1)]
w(1) = [Py, (1), v(1) = T

@ Search for total E[p] is shifted to search for E, [p] & (too) many approx.

for the latter were proposed.



]

Method @ Work

Minimizing E[p] with respect to p/9*° leads to N 1-particle equations:

A 1 .
(10,1 -1V, ()] =g 1), i=Le
v (r) depends on p(r)/ @*°(r) itself, thus we have pseudoigenvalue problem,
which must be solved iteratively, in similar way to HF.

The rest is almost like Hartree-Fock-Roothan method:
» Specify molecule (N, Z_, R)) & basis set (& spin - see further)
» Guess p° (& calc. E[p°])
» Calculate v [p°(r)] & solve 1-particle eqs. for € & ¢*°

» Calculate p' (or E[p']) from ¢*°> & compare with initial one - if the
same stop, if not calc. v [p'(r)] & .. efc

In practice - ¢*° are expanded in known, finite basis set & the problem
of finding ¢/p is reduced to

K
KS
finding expansion coefficients. @, (r) :ZM: Ci®u K=N
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KS method is exact onel If E [p]/v [p] were known, one would knew
exact p &, by putting it info E [p], exact electron E!

HF method is approximated one from the very beginning - one looks for
the best single determinant approx. to true N-electron WF.

KS method is genuine DFT approach, KS orbitals & determinant WF are
kind of byproduct to get true p & E.

In both HF & KS we have set of pseudoeigenvalue 1-particle equations:
1
—Vi+r'llg]l o/ (1) = &/ 9,(1), 4=HF KS

i

but in HF effective potential is nonlocal due to the presence of

exchange term: kb(z)xa(l):<xb(2)r—l)(a(2) x5(1)

12

In KS v (r) is (can be) local function of r (although nonlocal functional of
p(r)D), which makes life much easier.



«
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' 5 & Orbital Energies

Physical meaning of KS spinorbitals? - none, strictly speaking (like in HF).
The exception is KS HOMO Janak's theorem: ¢ = -IP, but it's true

HOMO

for exact E_ , approx. ones usually violates this theorem.

Xc'’

Total E is not a sum of orbital ener'gies! (it would 2x count in‘rerac’rions)

%8--] fvxc

However, KS orbitals were shown to be useful for m’rer'pr'e'ra’rlon often
better than HF or'bl’rals (Stowasser & Hoffmann JACS, 1999, 121, 3414)
C,NSH, DFT/PBE

§MO LUMO : ﬁmo Lumos

Unlike in HF, in KS both occupied & virtual orbitals experience correct
(N-1) el. potential, resulting in better description of excited states.



E. Made From?

E . lp]= (Vee_J)_I_(T_TS) <0, Jlp]= J.J.p(l)p(z)”l_zldrld”z
@ E_ismade from: I[p]= Z <¢§S(1)‘_(1/2)V?‘¢§S(1)>

1

1 (Coulomb) correlation contribution to V_[p] (<0).
2 Exchange (correlation) contribution to V_[p] (<0).

3 (Coulomb) correlation contribution to T[p] (>0).
@ E_isfor:

A accounting for (Coulomb) correlation between el.

B accounting for exchange (correlation) between el. of the same
spin

C removal of artificial el. self-interaction from J[p] term.

HF has exact B & C (K integrals), but no A. Available DFT variants have
A-C approx.



acobb's Ladder

@ Gnesis 28, le19 &J ohn Per'dew eaven of Chemical Accurac

g N

Exact XC
(+ virtual ¢*)

hyper-GGA
(+exact exchange/occ. ¢

KS)

meta-GGA

Generalized Gradient

@ Michael Willmann ‘Landscape with
Jacobb's Dream', ~1691, Gemdldgalerie, Berlin
@ Chemical accuracy AE ~ 0.01 eV

Hartree World



ppr'oximcn‘ion (LDA)

DERpl= [ prelpr)ldr= [ p(r)eo(r)]+elo(r)lldr
where ¢__is E, . density (per particle).

@ ¢, is p'?, thus we got Slater-Dirac functional.

@ ¢, bit more lengthy, analytical expressions known only for high & low

density limits. Very accurate interpolation is known from fitting to
Monte-Carlo simulations of homogenous gas for different p.

@ LDA is exact approach for homogenous gas, thus it works best for simple
metals. Nevertheless, it has (surprisingly) good performance for other
solids & (even) molecules.

@ LDA predicts pretty accurate geometries & IR fregs., slightly too short
bonds. Energetics is worse, LDA overestimates bondings.

@ Spectacular failures of LDA - wrong order of phase transition, incorrect
magnetic phases, e. g. for Fe nonmagnetic fcc phase predicted more
stable than magnetic bcc ferromagnetic.



2"! Rung: Generalized Gradi Approximation (6GA)

& 3™ Rung: meta-GGA

o] = [ p(r)e p(r),V p(r)ldr = [ plr)[eS+25]d r

4 Slmple gr'adlen’r expansion was shown to spoil LDA results, additional
constraints had to be imposed on gradient corrected sXC,This is GGA.

» GGA is generally much better than LDA, clearly better energetics.
Currently GGA is a kind of 'standard DFT".

» GGA overcorrelates electrons a bit, thus giving a bit too long
bonds/too low bonding energies.

» GGA is formally still local functional! Contribution to E__, in point r

GGA

depends only on the values of p & Vp at this point. It is referred to
as semilocal, because Vp depends on the p in r+dr.

pree=e J‘IO e p(r), Vo(r),Vp(r)dr

4 The next s’rep is to take V?p, or (almost) equivalently density of kinetic
energy. Meta-GGA offers moderate improvement to GGA results & is
moderately popular (historically 4™ step was developed before 3™ one).



g with (Semi)Local E 2

@ Main issues are:
» Negative ions & highly excited electronic states are not bound.

» No van der Waals interactions, i. e. no interactions between non-
overlapping p (hydrogen bonds are qualitatively OK in GGA).

» Too strong delocalization of d and f (particularly 3d & 4f)
electrons: too small or no gaps in Mott insulators, overstabilization
of low spin states = (semi)local DFT overcorrelates strong
correlation cases.

@ This is generally due to the wrong asymptotic behavior of v, (r).
In finite systems, for |r|—>e v, should —(-1/|r|), instead in (semi)local
approx. it decays exponantially with r, just like p(r).

@ To overcome this problems one needs nonlocal E, [p]. This is typically
achieved by making E, . explicit functional of KS orbitals.



4™ & 5™ Rungs omes Orbitals Again

@ 4™ pung (hyper-GGA, XX) should include (partially) exact exchange.

» The (only) widely applied variant of XX are hybrid functionals
B[] = EZ p e ay [ p)+(1-a) B3 [g], a€(0,1)

exact

where £

[qﬁffc] is a sum of exchange integrals (like in HF).
» Why not full HF-like exchange? Because mixing full exact exc. with
approx. corr. spoils overall E, . performance. Typically ais 0.2-0.5.

> Hybrids often perform much better than LDA & GGA, e. g. for strongly

correlated systems. But admixture of HF can spoils cases of strong
static correlation!

» Hybrids are computationally heavier than LDA & GGA, just like HF.

@ 5™ rung should include (partially) exact correlation, namely E, . should be

explicit functional of unocc. KS orbitals (e. g. MP2-like expression for
E.). As yet such functionals are not 'standard method’. they are also

more computationally expensive than 'standard’ DFT.



o Fit Or Not To Fit

@ How to design E, [p]? 2 schools:

» (1) rely only on known exact conditions, which should be fulfilled by
the exact E, [p]*.

» (2) rely on above & adjust certain parameters to exp. data/results
of highly accurate WF calc. for model systems.

@ At 80's & 90's approach (2) was quite common, currently there is shift
to more elegant (1) "constraint satisfaction' approach.

Partially because DFT expanded from physics to chemistry & in quantum
chemistry community 'semiempirical’ is a bad word, but also because of
limited transferability of empirical fitting.

@ Most of current 4™ & 5™ rung functionals employs fitted parameters.

* Note that good performance of LDA is due to the fact, that LDA fulfill several important
constraints the exact XC-functional does.



Functional Zoo

@ There are (too) many of approximated E, [p], names are typically

acronyms of the authors:

Fig. from Burke

J. Chem. Phys. 2012, 136, 150901.
@ B3LYP hybrid gained huge popularity
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(in 2007 80% of DFT citations) - but it is not flawless, even for main

group elements.

@ Hybrid-meta-GGA MO6 is gaining popularity in recent years.

@ Pretty good & empirical parameter free are gradient PBE & hybrid PBEO.



ing Shortcuts in DFT

@ Many solutions to specific DFT problems proposed.
@ Van der Waals interactions:

» The simplest approach to account for them is semiempirical DFT-D

C
Eppr_p = EDFT+Z fdamp AB) RAB , RAB_)():fdamp(RAB)_)O
AB

C,, fitted fo exp. da’ra (e. g. polarizabilities) or MP2 results, correction
can be added to any ‘normal’ DFT.

» Adding nonlocal part to (semi)local EXC. This term is calc. in non-SCF
manner, thus increase in compu‘ra‘non time negligible.

EDFT+nonloc_EDFT+ffp ”1 (r,rz)p(rz)d” r,
Grimme WIREs Comp. Mol. Sci. 2011, 1, 211; Klimes & Michaelides JCP 2012, 137, 120901.

@ DFT+U for strongly correlated d & f electrons: in solid state physics
it is offen expressed by explicitly orbital dependent term, which
strength is controlled by empirical U parameter.

see for example Himmetoglu & co. Int. J. Quantum Chem. 2014, 114, 14.



Density or Spir ' y? (H, Strikes Back)

@ In non-relativistic case H is not spin dependent & HK guarantees, that E
is the functional of p only, even for spin polarized case. Formally we do
need functional of spin densities pp° only in relativistic case.

@ In practice, approx. E [p%p°] are shown to work better than approx.
E, [p]. This leads to unrestricted & res’rr'lcfed KS me’rhods (luke in HF)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ H, dissociation: 4_- EXX RKS

——

singlet H, should break into 2_

PBE RKS

2 singlet H atoms (1/2 a & p spin at each),

EXX UKS
----- — PBEO UKS

.......... PBE UKS
— — — — exact

but approx. RKS can't do it.
UKS gives correct dissociation curve,
but breaks spin symmetry (H+HP).

Fig from Fuchs et al. JCP 2005, 122, 094116.

@ Pragmatic approach: enjoy accurate E vs R curve & do not think foo much
about incorrect spin densities.



Wiy Bo We Like OFT & k?

@ Simply, it is correlated method with computational cost of HF (or less).

@ For strongly correlated systems, like transition metals, HF practically
always fails, DFT often gives good results.

@ DFT is the only correlated method applicable to wide class of solids,
both metals & semiconductors.

@ Scaling of (semi)local DFT with basis set size K (~N_) can be done even

more favorable than of HF. Orbital dependen‘r exchange operator in HF
leads to ~K* 2-el. integrals < (1)v(2 |r12|)L )> KS potential is only
p dependent, thus if one expands p in auxuhary basis set p—z C.o,
one has only ~K3< (1) |r12|a )L(1)> integrals. “

@ DFT is also less demanding about the quality(size) of basis set than
traditional quantum chemistry methods.

@ That's why Walter Kohn got the Nobel Prize in chemistry in 1998.



ittle DFT Show-Off

@ Harmonic O, frequencies (Jensen “Introduction to Computational Chemistry")

—8+ —6+

RHF 1537 1418 867
a Spin states in Fe complexes MP2 66 2241 743
(Wéjcik & co. Biochemistry 2012, 51,9570+ CCSD(T) 1154 1067 717
+private corm. with Tomasz Borowski) _

GGA/BLYP 1130

AE(eV) between S=3 (L-Fe®*-0-) & S=2 (L-Fe*=0)

B3LYP




L

@ Wide choice. Any quantum chemistry code doing HF can do DFT/KS,
there are also DFT-only codes with only (semi)local E, .

@ http://enwikipedia.org/wiki/List_of_quantum_chemistry_and_solid_sta
te_physics_software

- Molecules free GAMESS, NWChem, ORCA
commercial Turbomole, Gaussian, ADF, Jaguar
- Solids free SIESTA, Quantum Espresso, ABINIT

commercial  VASP, Wien2k
@ Example Gaussian input for H O molecule: B3LYP geometry optimization
& freq. calc. in STO-36G basis set. # b3lyp/ssto—dg opt freq

water
0] 1
0 -08.464 B.177 B.0
H -08.464 1137 B.0
H B.4h1 -B.143 B.0



@ DFT is empirical, not an ab initio method.

(by orthodox quantum chemist)
NOOOOIll DFT is exact theory (HK theorems)
& KS is in principle exact realization of it.
The issue is that E [p] is approximated.
Even so, most of current approx. are free of empirical fitting.
Virtually all DFT resentments should be addressed to approx. E, [p].

@ There is no way of systematic improvement of DFT, unlike good ol
quantum chemistry method.

Well, strictly speaking it's right. But there is general scheme how
to proceed with improvement of E, [p] (Jacobb's ladder).



on DFT Superstitions

@ KS is often OK, but being single determinant method, can't handle
strong static correlation. (by moderately liberal quantum chemist)

KS determinant WF is exact WF for fictious noninteracting
reference kohnshamions, having the same p as the corresponding
system of electrons. If only we knew exact E, [p], KS would give us

exact E, even for 'strong static correlation’.

(& in general, for p of degenerated state, KS WF can be linear combination of several
determinants)

@ DFT is ground state theory, can't handle excited states.

In principle, ground state p determines full H thus its excited
states as well. But because HK2 variational principle holds only for
E..[p]. practical search for excited states E scheme is somewhat

more involved (usually achieved by time dependent DFT)
@ DFT can't handle van der Waals interaction.
(Semi)local approx. can't indeed, but nonlocal (even approx.) E, . can.



Mon Superstitions

@ KS (spin)orbitals are great! (99.9 % of DFT users)

Practice & certain theoretical considerations justify the use of KS
orbitals for interpretative purposes & they are usually better than
HF ones. But remember, they are orbitals for kohnshamions, not
electrons, use them at your own risk.

@ B3LYP is the best! (by organic chemist).
Nope.

@ If you still experience problems, please consult: J. Perdew "Some
Fundamental Issues in Ground State DFT: A Guide For the Perplexed”
J. Chem. Theory Comp. 2009, 5, 902.
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& v-representability

«

N-representability question: does every (physically reasonable) p can be
obtained from integration of certain N-particle antisymmetric ¥?

p(r)= N;f "P(x17x2x3...xN)‘2dr2dr3...drN
YES (Gilbert PR-8B, 1975, 12, 2111)

v-representability question: does every (N-representable) p can be
obtained from ¥ associated vith external potential (being eigenfunction
of H containing v_)).

Well, not proved in general case. Note that this is important for
validation of KS method, it assumes the existence of effective v_ for
which p_ (of nonint. particles) equals to p (of real electrons).

Nevertheless, many important special cases of v-representability were
proved & it doesn't seem to be big problem in practice.

Original HK proofs was given only for v-representable p, Lieb & Levy
later showed that E can be expressed as functional of p for any
N-representable p.



Appendix B: Tales c o Coorelation Energies

In (nonrelativistic)quantum chemistry correlation energy E. is defined as

the difference between exact (full CI in complete basis set) & HF
energy (in the same basis set)

EZF — Eexact_EHF — Eexact_<lPHF‘He 'PHF>
In KS, E, is the difference between total E, . & E, only, which is
EgFT =Ly~ Ey= Eexact_<wKS‘He‘WKS>
Because ¥ _is Slater determinant minimizing <'P SD‘ﬁe

DFT HF
EXT <E"

'PSD> then

Anyway, remember that DFT with exact E, [p] should give exact total E
& this is what really matters!



Appendix C: ge-Correlation Hole
& Adiabatic Connection

@ Pair density p_(r,, r,) describes probability density of concurrent finding
of 2 el. inr &r, respectively: Pz(”l ”z) = N N —1 Z“'P| dry...dry

@ XC hole describes difference in 2-body pr'obablll’ry density for
independent & correlated particles (kohnshamions & electrons)

corr

P, (”1 "2) e :0(”1):0(”2) = p(”l)p(”z) "‘P(”l)hxc(”l,rz)

ff,ocm rlr2 )Jdr,dr,=N(N—1 fthC (ryry)drdr,=—1
@ Consider H dependent on parame’rer A, which vary, from O for KS
particle, to 1 for real electrons: H ; = T-I-)LZ “+V’, , where Vj;t

gives always the same (real electrons) p (i. e. is changed adlaba‘rically)

@ Exact E [p] can be expr'essed as the Coulomb interaction between p &
hXC, averaged over A: EXC f dlf P(’H)hxc(l, r ,1”2)1’12 dr,dr,

with the leading contribution 7 [p] = J' p(rl)hgl(rlyrz)rl_;drldrz
@ It was shown that spherically averaged h, . in LDA & GGA resembles

pretty well the accurate one (known for model systems).



Appendix D: Several Certain Conditions

& Example E_ Functional

@ (1) Size consistency R,,—0=E[p,+p,]=E[p,]+E[p]
@ (2) Spin scaling E[p“, p"]=112(E y[2p“ ]+ E4[2 p"])
@ (3)Lieb-Oxford lower bound E,[p] = E ,[p]= 2.273 E;'[ o]

@ (4) One electron limit E p,]=0AE,[pl=—J[p,]

(removal of spurious self-interaction from Coulomb energy only)

@ Every (semi)local functional fulfills (1) & (2), LDA & several GGA
functional (like PBE) satisfy (3). Regarding (4), E_[p,] =0 is fulfilled

by meta-GGA, but to get E [ p| = —J[p,] onhe needs fully nonlocal (KS
orbital dependent) functional.

@ Per'dew -Zunger formula for LDA E,_ 3 (1/3)
Alnr +B+Cr Inr, —I—Dr r<1 r=
gPZ =< 4T[:0<r)
o r.>1 PZ _ PZ
TR ey e B = [ plr)el’dr



Appendix E: N-disconti of chemical potential

@ Derivative of E with respect to no. of el. is discontinuous for integers:

Exact
typical LDA/GGA —

Fig. from Cohen & co. "A fractional
view of the XC Functional..."

http://www.psi-k.org/newsletters/
News_99 /Highlight_99.pdf

Energy

N-1 N N+1
Number of electrons

@ All (semi)local approx. for E, can't reproduce this feature of exact E.

oT, oT,

on |, . = € yomo (V) # € 0N ) = o7

@ Thus even for exact density functional KS HOMO-LUMO gap is not equal
to the fundamental gap (I-A)! (& optical as well, as this is the difference
between E(N) of the 1°" excited & ground state).

@ Note that:

N —
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