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The Previous Talk in 3 Slides (1)

Hartree-Fock method  is variational search for the best approximation 
to the unknown, N-electron wavefunction in a form of Slater 
determinant made of N 1-electron wavefunction called spinorbitals.

E HF=min 〈Ψ SD∣Ĥ e∣Ψ SD〉
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The Previous Talk in 3 Slides (2)

Minimization of                         leads to set of N 1-el. (pseudoeigenvalue) 
Fock equations, which must be solved iteratively →  Self Consistent 
Field (SCF) procedure. 
To make Fock equations solvable in practice, one has to expand SO in 
certain known, finite, thus incomplete basis set. The quality of HF & 
post-HF results depends on the type & size of the basis functions. 
Byproduct of HF is set of 1-el. spinorbitals (SO), they & their 
eigenvalues should be interpreted with caution. 
HF predicts pretty good geometries & IR freqs. at least for closed shell  
molecules. Energetics (ΔE of chemical reaction, electronic excitations) 
are not so good, often very bad.
Why? HF method is mean field approximation, namely each electron 
interacts with the average electric field created by (N-1) remaining 
electrons. But electrons should interacts one with another, not by mean 
field.

〈Ψ SD∣Ĥ e∣Ψ SD〉



The Previous Talk in 3 Slides (3)

HF method correctly describes, due to the antisymmetric form of SD, 
exchange correlation, i. e. between el. of the same spin.  
Coulomb correlation  is missing, due to the mean field treatment of e-e 
interactions.
Correlation Energy E

corr
 = E

exact
 – E

HF
<0,  large fraction of measurable ΔE.

Coulomb correlation  can be roughly divided into (i) dynamical – el. move 
in a way to avoid each other, (ii) static – when N-el. WF can't be approx. 
by one SD.

Configuration Interaction method: the exact N-el. WF is represented as 
a linear combination of many SD.                           
In practice full CI can be done for very small molecules (~ 10 electrons) 
& many approx. to  it were  developed. They are still computationally 
expensive and/or suffer from certain limitations. E. g. MP2  method can 
be applied to moderate systems of ~100 electrons, but it describes 
dynamical correlation only.
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Approches to Electron Energy

– Wavefunction (WF) based methods
– Density Functional Theory up to ~102 – 103 atoms
– Semiempirical/Tight Binding methods 
– Molecular Mechanics
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Functionals for Appetizer

Functional is a F[f] function, which arguments are functions & the values 
are numbers,  e. g. arc length connecting (x

1
,y
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) & (x
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)                            

                   

with domain {f}: f(x
1
)=y

1
 & f(x

2
)=y

2
, has minimum

Functional is local, if f(x) for each x contributes independently to F, e. g.

otherwise is nonlocal, e. g.

In QM mean E is functional of Ψ
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Electron (Probability) Density

                     for finite systems: 

ρ(r) is much nicer creature than Ψ – it lives in our 3D physical space, 
instead of 4N spin-position space & is observable, can be “seen” in 
diffraction experiments.

Fig. from Czabotar & co. PNAS,
2007, 104, 6217.
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In The Beginning...

Idea to represent E (or its part) as a functional of electron density ρ(r) 
is almost as old as Schrödinger equation (1926).
Thomas-Fermi model for homogeneous electron gas (1927)

                 T
TF

                    interaction with           classical Coulomb          
                                        external potential                 energy
+ Dirac therm for exchange energy (lowering of effective repulsion 
between el. of the same spin due to Pauli exclusion) 
TF model has some success in (qualitative) atomic & solid state physics, 
but it fails to describe chemical bonding.
von Weizsäcker correction to T

TF
 

gives qualitative description of chemical bonds, but results still not  
impressive.
Generally, it's hard to find a robust expression for T[ρ].
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ρ (r 1)ρ (r 2)
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TW∝∫
∣∇ ρ (r )∣

2

ρ (r )
d r



Make Hartree-Fock Easier

Xα method (Slater 1951):

Xα  method gives HF quality results (or worse), but is much faster 
computationally (~K4 exchange integrals avoided). It was quite popular in 
computational physics & chemistry in 60's-80's, including modeling of 
solids or medium size molecules. 
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Hohenberg-Kohn Theorems

But it was until 1964, when the use of density functionals was legalized:
– HK1  External*  potential is uniquely determined (up to additive 

constant) by the ground state density of particles.

Consequently ρ(r) determines Ψ
GS

, thus E & any observabla.

*External means not coming from considered particles, like nuclear potential for 
electrons in molecules & solids.

– HK2 If E
v
[ρ] is functional dependence of E on ρ for a given external 

potential v, then for any N-particle trial density:

(due to Ritz-Rayleigh variational principle for Ψ & because Ψ=Ψ[ρ]).
Initial HK proof was only for special class of  ρ, but it was extended to 
more general cases soon.

Hohenberg & Kohn Phys. Rev. 1964, 136, B864; Lieb & Levy PNAS 1979, 76, 6062.

ρ1(r) ≠ ρ 2(r ) ⇒ v1(r ) ≠ v2(r)(+const.)

ρ (r ) ⇒ vext (r ) ⇒ Ψ (r ,σ )

Ev [ρ trial ] ≥ Ev[ ρexact ] = EGS



More on Hohenberg-Kohn Theorems

The consequence singularity of Coulomb potential in the position of point 
charge, el. density obeys Kato's cusp condition

Furthermore 
Knowing ρ(r) we know no. of electrons, positions & charges of nuclei, thus 
we know full (nonrelativistic, Born-Oppenheimer approx.) Ĥ.
 Wilson JCP 1962, 36, 2232.

Fig. after Jacobsen & Cavallo “Directions For Use DFT...” in “Handbook of Computational 
Chemistry Vol. 1” Springer, 2012.
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Kohn-Sham Method

HK proofs are existence theorems, they say nothing about finding E[ρ].
Kohn-Sham idea: consider fictional system of N noninteracting fermions 
(kohnshamions?) in certain external v

s
(r) & having the same ρ(r) as the 

real system of N interacting electrons. Kohn & Sham Phys. Rev. 1965, 140, A1133.

   

T of noint. particles is exactly 
The existence of v

s
(r) producing ρ

s
=ρ

0
 has not been proved in general, 

but it was for many specific cases & no counterexample was found. 
Due to HK1 if v

s
(r) exists for given ρ, it is unique.
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Exchange-Correlation Energy (& Potential)

E
XC

[ρ] covers all parts of T & V
ee

 which are not (1)  kinetic energy of 
nonint. fermions T

s
[ρ] & (2) classical Coulomb energy J[ρ]. 

T
s
[ρ], being the largest part of T[ρ],  can be calc. exactly as T

s
[φ].

It can be shown that our wanted v
s
(r) is:

Search for total E[ρ] is shifted to search for E
XC

[ρ] & (too) many approx. 
for the latter were proposed. 

E real [ρ ] = T [ ρ ]+V ee [ρ ]+V ext [ρ ] = (ri = i )
T s[ρ ] J [ρ ] V ext [ρ ]
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r12

d r1d r2+∫ vext(1)ρ (1)d r1+
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vs(1) = ∫
ρ (2)
r12
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δ E xc [ρ (1)]

δ ρ (1)



Kohn-Sham Method @ Work

Minimizing E[ρ] with respect to ρ/φKS leads to N 1-particle equations:

v
s
(r) depends on ρ(r)/φKS(r) itself, thus we have pseudoigenvalue problem, 

which must be solved iteratively, in similar way to HF.
The rest is almost like Hartree-Fock-Roothan method:

Specify molecule (N, Z
I
, R

I
) & basis set (& spin – see further)

Guess ρ0 (& calc. E[ρ0])
Calculate v

s
[ρ0(r)] & solve 1-particle eqs. for ε & φKS

Calculate ρ1  (or E[ρ1])  from φKS  & compare with initial one – if the 
same stop, if not calc.  v

s
[ρ1(r)] & … etc

In practice – φKS  are expanded in known, finite basis set & the problem 
of finding φ/ρ is reduced to 
finding expansion coefficients.

ĥs(1)φ i(1)=(−1
2

∇ 1
2
+vs(1))φ i(1)=ε iφ i(1) , i=1,… , N

φ i
KS

(r)=∑
μ

K

Cμ iϕμ , K≥N



Kohn-Sham vs. Hartree-Fock

KS method is exact one!  If E
xc

[ρ]/v
xc

[ρ] were known, one would knew 
exact ρ &, by putting it into E

v
[ρ], exact electron E! 

HF method is approximated one from the very beginning – one looks for 
the best single determinant approx. to true N-electron WF.
KS method is genuine DFT approach, KS orbitals & determinant WF are 
kind of byproduct to get true ρ & E.
In both HF & KS we have set of pseudoeigenvalue 1-particle equations:

but in HF effective potential is nonlocal due to the presence of 
exchange term:

In KS v
s
(r) is (can be) local function of r (although nonlocal functional of 

ρ(r)!), which makes life much easier.

(−
1
2

∇1
2
+v A

[{φ j
A}] )φ i

A
(1) = ε i

Aφ i(1) , A=HF ,KS

K̂ b(2) χ a(1)=〈χ b(2)∣ 1
r12 ∣χ a(2)〉 χ b(1)



KS Orbitals & Orbital Energies

Physical meaning of KS spinorbitals? - none, strictly speaking (like in HF).
The exception is KS HOMO Janak's theorem:  ε

HOMO
 = -IP, but it's true 

for exact E
XC

, approx. ones usually violates this theorem.

Total E is not a sum of orbital energies! (it would 2x count interactions)

However, KS orbitals were shown to be useful for interpretation, often 
better than HF orbitals. (Stowasser & Hoffmann JACS, 1999, 121, 3414)

Unlike in HF, in KS both occupied & virtual orbitals experience correct 
(N-1) el. potential, resulting in better description of excited states.

EKS = ∑
i

occ.

ε i−
1
2
J [ρ ]+E xc [ρ ]−∫v xc(r )ρ (r )d r

HF
HOMO LUMO

DFT/PBE
HOMO LUMO

C
2
NSH

2



What is E
xc
 Made From?

E
xc

 is made from:

1 (Coulomb) correlation contribution to V
ee

[ρ] (<0).

2 Exchange (correlation) contribution to V
ee

[ρ] (<0).

3 (Coulomb) correlation contribution to T[ρ] (>0).
E

xc
 is for:

A accounting for (Coulomb) correlation between el.
B  accounting for exchange (correlation) between el. of the same 
spin
C removal of artificial el. self-interaction from J[ρ] term.

HF has exact B & C (K integrals), but no A. Available  DFT variants have 
A-C approx.

E XC [ρ ] = (V ee−J )+(T−T s) < 0, J [ρ ] =∫∫ρ (1)ρ (2)r12
−1d r1d r2

T s[ρ ] =∑
i

〈φ i
KS (1)∣−(1 /2)∇ 1

2∣φ i
KS (1)〉



Jacobb's Ladder

Genesis 28, 10-19 & John Perdew

Michael Willmann 'Landscape with 
Jacobb's Dream', ~1691, Gemäldgalerie, Berlin
Chemical accuracy ΔE ~ 0.01 eV

Heaven of Chemical Accuracy

Exact XC 
(+ virtual φKS)

hyper-GGA 
(+exact exchange/occ. φKS )

meta-GGA 
(+∇2ρ)

Generalized Gradient 
Approx. (+∇ρ)

Local Density Approx. 
(ρ only)

Hartree World



1st Rung: Local Density Approximation (LDA)

where ε
XC

 is E
XC

 density (per particle).

ε
X 
is ρ1/3, thus we got Slater-Dirac functional.

ε
C  

bit more lengthy, analytical expressions known only for high & low 
density limits. Very accurate interpolation is known from fitting to 
Monte-Carlo simulations of homogenous gas for different ρ.
LDA is exact approach for homogenous gas, thus it works best for simple 
metals. Nevertheless, it has (surprisingly) good performance for other 
solids & (even) molecules.
LDA predicts pretty accurate geometries & IR freqs., slightly too short 
bonds. Energetics is worse, LDA overestimates bondings.
Spectacular failures of LDA – wrong order of phase transition, incorrect 
magnetic phases, e. g. for Fe nonmagnetic fcc phase predicted more 
stable than magnetic bcc ferromagnetic. 

E XC
LDA [ρ ] =∫ρ (r )ε XC [ρ (r )]d r =∫ρ (r ){ε X [ρ (r )]+ε C [ρ (r )]}d r



2nd Rung: Generalized Gradient Approximation (GGA)
& 3rd Rung: meta-GGA

Simple gradient expansion was shown to spoil LDA results,  additional 
constraints had to be imposed on gradient corrected ε

XC
,this is GGA.

GGA is generally much better than LDA, clearly better energetics. 
Currently GGA is a kind of 'standard DFT'.
GGA overcorrelates electrons a bit, thus giving a bit too long 
bonds/too low bonding energies.
GGA is formally still local functional! Contribution to E

GGA
 in point r 

depends only on the values of ρ & ∇ρ at this point. It is referred to 
as semilocal, because ∇ρ depends on the ρ in r+dr.

The next step is to take ∇2ρ, or (almost) equivalently density of kinetic 
energy. Meta-GGA  offers moderate improvement to GGA results & is 
moderately popular (historically 4th step was developed before 3rd one).

E XC
GGA[ ρ ] =∫ρ (r )ε XC

GGA [ ρ (r) ,∇ ρ (r )] d r =∫ρ (r ){ε X
GGA+ε C

GGA}d r

E XC
meta−GGA

[ρ ] =∫ρ (r )ε XC
GGA

[ρ (r ) ,∇ ρ (r) ,∇ 2 ρ (r )] d r



What is Wrong with (Semi)Local E
XC
?

Main issues are:
Negative ions & highly excited electronic states are not bound.
No van der Waals interactions, i. e.  no interactions between non-
overlapping ρ (hydrogen bonds are qualitatively OK in GGA).
Too strong delocalization of d  and f   (particularly 3d  & 4f) 
electrons: too small or no gaps in Mott insulators, overstabilization 
of low spin states = (semi)local DFT overcorrelates strong 
correlation cases.

This is generally due to the wrong asymptotic behavior of v
XC

(r). 
In finite systems, for |r|®∞ v

XC
 should ®(-1/|r|), instead in (semi)local 

approx. it decays exponantially with r, just like ρ(r).
To overcome this problems one needs nonlocal E

XC
[ρ]. This is typically 

achieved by making E
XC

 explicit functional of KS orbitals.



4th & 5th Rungs: Here Comes Orbitals Again

4th rung (hyper-GGA, XX) should include (partially) exact exchange. 
The (only) widely applied variant of XX are hybrid functionals

where                     is a sum of exchange integrals (like in HF). 
Why not full HF-like exchange? Because mixing full exact exc. with 
approx. corr. spoils overall E

XC
 performance. Typically a is 0.2-0.5.

Hybrids often perform much better than LDA & GGA, e. g. for strongly 
correlated systems. But admixture of HF can spoils cases of strong 
static correlation!
Hybrids are computationally heavier than LDA & GGA, just like HF.

5th rung should include (partially) exact correlation, namely E
XC

 should be 
explicit functional of unocc. KS orbitals (e. g. MP2-like expression for 
E

C
). As yet such functionals are not 'standard method'; they are also 

more computationally expensive than 'standard' DFT. 

E XC
hybrid

[ρ ] = EC
(meta)GGA

[ρ ]+aEX
(meta)GGA

[ρ ]+(1−a)EX
exact

[φocc
KS

] , a∈(0,1)

E X
exact

[φ occ
KS

]



To Fit Or Not To Fit

How to design E
XC

[ρ]? 2 schools:

(1) rely only on known exact conditions, which should be fulfilled by 
the exact E

XC
[ρ]*.

(2)  rely on above & adjust certain parameters to exp. data/results 
of highly accurate WF calc. for model systems.

At 80's & 90's approach (2) was quite common, currently there is shift 
to more elegant (1) 'constraint satisfaction' approach. 
Partially because DFT expanded from physics to chemistry & in quantum 
chemistry community 'semiempirical' is a bad word, but also because of 
limited transferability of empirical fitting.
Most of current 4th & 5th rung functionals employs fitted parameters.
* Note that good performance of LDA is due to the fact, that LDA fulfill several important 
constraints the exact XC-functional does.



Functional Zoo

There are (too) many of approximated E
XC

[ρ], names are typically 
acronyms of the authors:

Fig. from Burke 
J. Chem. Phys. 2012, 136, 150901.

B3LYP hybrid gained huge popularity in (organic) chemistry 
(in 2007 80% of DFT citations) – but it is not flawless, even for main 
group elements.
Hybrid-meta-GGA M06 is gaining popularity in recent years.
Pretty good & empirical parameter free are gradient PBE & hybrid PBE0.



Making Shortcuts in DFT

Many solutions to specific DFT problems proposed.
Van der Waals interactions:                             
The simplest approach to account for them is semiempirical DFT-D 

C
AB

 fitted to exp. data (e. g. polarizabilities) or MP2 results, correction 
can be added to any 'normal' DFT.
Adding nonlocal part to (semi)local EXC. This term is calc. in non-SCF 
manner, thus increase in computation time negligible.

Grimme WIREs Comp. Mol. Sci. 2011, 1, 211; Klimeš & Michaelides JCP 2012, 137, 120901.

DFT+U for strongly correlated d & f electrons:  in solid state physics 
it is often expressed by explicitly orbital dependent term, which 
strength is controlled by empirical U parameter.

see for example Himmetoglu & co.  Int. J. Quantum Chem. 2014, 114, 14.

EDFT −D = E DFT+∑
AB

f damp (RAB)
C AB

RAB
6
, RAB→0⇒ f damp (RAB)→0

EDFT +nonloc = E DFT+∫∫ρ (r1)φ (r1,r 2)ρ (r 2)d r1 r2



Density or Spin Density? (H
2
 Strikes Back)

In non-relativistic case Ĥ is not spin dependent & HK guarantees, that E 
is the functional of ρ only, even for spin polarized case. Formally we do 
need functional of spin densities ρα,ρβ only in relativistic case.
In practice, approx. E

XC
[ρα,ρβ] are shown to work better than approx. 

E
XC

[ρ]. This leads to unrestricted & restricted KS methods (like in HF).

H
2
 dissociation: 

singlet H
2
 should break into 

2 singlet H atoms (1/2 α & β spin at each), 
but approx. RKS can't do it. 
UKS gives correct dissociation curve, 
but breaks spin symmetry (Hα+Hβ).    
       Fig from Fuchs et al. JCP 2005, 122, 094116.

Pragmatic approach: enjoy accurate E vs R curve & do not think too much 
about incorrect spin densities.



Why Do We Like DFT & KS?

Simply, it is correlated method with computational cost of HF (or less).
For strongly correlated systems, like transition metals, HF practically 
always fails, DFT often gives good results.
DFT is the only correlated method applicable to wide class of solids, 
both metals & semiconductors.
Scaling of (semi)local DFT with basis set size K (~N

el
) can be done even 

more favorable than of HF. Orbital dependent exchange operator in HF 
leads to ~K4 2-el. integrals                                        , KS potential is only 
ρ dependent, thus if one expands ρ in auxiliary basis set                        
one has only ~K3                                  integrals.
DFT is also less demanding about the quality(size) of basis set than 
traditional quantum chemistry methods. 

That's why Walter Kohn got the Nobel Prize in chemistry in 1998.

〈μ(1)ν (2)∣r12
−1∣λ (1)σ (2)〉

ρ =∑
α
Cα ϕ̃α

〈μ(1)∣r12
−1∣α (2)λ (1)〉



Just A Little DFT Show-Off

Harmonic O
3
 frequencies (Jensen “Introduction to Computational Chemistry”)

Spin states in Fe complexes
(Wójcik & co. Biochemistry 2012, 51, 9570+
+private comm. with Tomasz Borowski)

                                  ΔE(eV) between S=3 (L-Fe3+-O·) & S=2 (L-Fe4+=O)

ω
sym

ω
asym

ω
bend

Exp. 1135 1089 716

RHF 1537 1418 867

MP2 1166 2241 743

CCSD(T) 1154 1067 717

LDA/SVWN 1249 1148 744

GGA/BLYP 1130 980 683

hybrid /B3LYP 1252 1194 746

O
 O            O׀

δ+ δ+

O
·O            O·

δ- O
O            O׀

δ-

ROHF -4.88

CCSD(T) 0.90

B3LYP 0.77



DFT Cooking

Wide choice. Any quantum chemistry code doing HF can do DFT/KS, 
there are also DFT-only codes with only (semi)local E

XC
.

http://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid_sta
te_physics_software

– Molecules free GAMESS, NWChem, ORCA
 commercial Turbomole, Gaussian, ADF, Jaguar

– Solids free SIESTA, Quantum Espresso, ABINIT
 commercial VASP, Wien2k
Example Gaussian input for H

2
O molecule: B3LYP geometry optimization 

& freq. calc. in STO-3G basis set.



Common DFT Superstitions 

DFT is empirical, not an ab initio method. 
(by orthodox quantum chemist)

NOOOO!!! DFT is exact theory (HK theorems) 
& KS is in principle exact realization of it.
The issue is that E

XC
[ρ] is approximated.           

Even so, most of current approx. are free of empirical fitting. 
Virtually all DFT resentments should be addressed to approx. E

XC
[ρ].

There is no way of systematic improvement of DFT, unlike good ol'  
quantum chemistry method.

Well, strictly speaking it's right. But there is general scheme  how 
to proceed with improvement of E

XC
[ρ] (Jacobb's ladder).  



Common DFT Superstitions

KS is often OK, but  being single determinant method, can't handle 
strong static correlation. (by moderately liberal quantum chemist)

KS determinant WF is exact WF for fictious noninteracting 
reference kohnshamions, having the same ρ  as the corresponding 
system of electrons. If only we knew exact E

XC
[ρ], KS would give us 

exact E, even for 'strong static correlation'.
(& in general, for ρ of degenerated state, KS WF can be linear combination of several 
determinants)

DFT is ground state theory, can't handle excited states.
In principle, ground state ρ determines full Ĥ, thus its excited 
states as well. But because HK2 variational principle holds only for 
E

GS
[ρ], practical search for excited states E scheme is somewhat 

more involved (usually achieved by time dependent DFT)
DFT can't handle van der Waals interaction.

(Semi)local approx. can't indeed, but nonlocal (even approx.) E
XC

 can.



DFT Common Superstitions

KS (spin)orbitals are great! (99.9 % of DFT users)
Practice & certain theoretical considerations justify the use of KS 
orbitals for interpretative purposes & they are usually better than 
HF ones. But remember, they are orbitals for kohnshamions, not 
electrons, use them at your own risk.

B3LYP is the best! (by organic chemist).
Nope.

If you still experience problems, please consult: J. Perdew “Some 
Fundamental Issues in Ground State DFT: A Guide For the Perplexed“ 
J. Chem. Theory Comp. 2009, 5, 902.



Suggested Reading – Articles & Chapters

Chapters about DFT in Jensen, Crammer & Lewars' handbooks.
H. Jacobsen & L. Cavallo “Directions for Use of DFT...” in “Handbook of 
Computational Chemistry”, Springer 2012.
K. Capelle “A Bird’s-Eye View of Density-Functional Theory” Braz. J. 
Phys. 2006, 36, 1318; arxiv.org/pdf/condmat/0211443
R. O. Jones “Introduction to DFT & XC Functionals” in NIC Series vol. 
31, http://webarchiv.fz-juelich.de/nic-series//volume31/jones.pdf
W. Kohn, A. D. Becke & R. G. Parr J. Phys. Chem. 1996, 100, 12974.
J. Perdew & co. J. Chem. Phys. 2005, 123, 062201.
K. Burke J. Chem. Phys. 2012, 136, 150901; K. Burke & L. Wagner Int. J. 
Quantum Chem. 2013, 113, 96.
F. Neese Coord. Chem. Rev. 2009, 253, 526-563.
… & many, many others.



Suggested Reading – Whole Books

W. Koch & M. C. Holthausen “A Chemist's Guide to Density Functional 
Theory” Wiley 2001.
“A Primer in Density Functional Theory” Springer 2003.
K. Burke “The ABC of DFT” http://www.chem.uci.edu/~kieron/dftold2/ 
materials/bookABCDFT/gamma/g1.pdf
J. Kohanoff “Electronic Structure Calculations for Solids & Molecules: 
Theory & Computational Methods”  Cambridge 2006.
R. Martin “Electronic Structure: Basic Theory & Practical Methods” 
Cambridge 2010.
& many others ...
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Appendix A: N- & v-representability

N-representability question: does every (physically reasonable) ρ can be 
obtained from integration of certain N-particle antisymmetric Ψ?

YES (Gilbert PR-B, 1975, 12, 2111)
v-representability question:  does every (N-representable) ρ  can be 
obtained from Ψ associated vith external potential (being eigenfunction 
of Ĥ containing v

ext
).

Well, not proved in general case. Note that this is important for 
validation of KS method, it assumes the existence of effective v

s
 for 

which ρ
s

 (of nonint. particles) equals to ρ (of real electrons). 
Nevertheless, many important special cases of v-representability were 
proved & it doesn't seem to be big problem in practice.
Original HK proofs was given only for v-representable ρ, Lieb & Levy 
later showed that E can be expressed as functional of ρ for any 
N-representable ρ.

ρ (r ) = N ∑
σ i

∫∣Ψ (x1, x2 x3…x N )∣
2
d r2d r3…d rN



Appendix B: Tales of Two Coorelation Energies

In (nonrelativistic)quantum chemistry correlation energy E
C
 is defined as 

the difference between exact (full CI in complete basis set) & HF 
energy (in the same basis set)

In KS, E
C
 is the difference between total E

XC
 & E

X
 only, which is

Because Ψ
HF

 is Slater determinant minimizing                            then 

Anyway, remember that DFT with exact E
XC

[ρ] should give exact total E 
& this is what really matters!

EC
HF

= Eexact−EHF = E exact−〈Ψ HF∣Ĥ e∣Ψ HF〉

EC
DFT = E XC−E X = E exact−〈Ψ KS∣Ĥ e∣Ψ KS 〉

〈Ψ SD∣Ĥ e∣Ψ SD〉
EC

DFT
≤EC

HF



Appendix C: Exchange-Correlation Hole 
& Adiabatic Connection

Pair density ρ
2
(r

1
, r

2
) describes probability density of concurrent finding 

of 2 el. in r
1
 & r

2
, respectively: 

XC hole describes difference in 2-body probability density for 
independent & correlated particles  (kohnshamions & electrons)

Consider Ĥ  dependent on parameter λ, which vary from 0 for KS 
particle, to 1 for real electrons:                                          , where           
gives always the same (real electrons) ρ (i. e. is changed adiabatically).
Exact E

XC
[ρ] can be expressed as the Coulomb interaction between ρ  & 

h
XC

, averaged over λ:

with the leading contribution 
It was shown that spherically averaged h

XC
 in LDA & GGA resembles 

pretty well the accurate one (known for model systems).

ρ 2(r1, r2) = N (N−1)∑
σ i

∫∣Ψ ∣
2
d r3…d rN

ρ 2
corr

(r1, r2) ≠ ρ (r1)ρ (r 2) = ρ (r1)ρ (r 2) +ρ (r1)hXC (r1,r 2)

∫∫ρ 2
corr

(r1,r 2)d r1d r2=N (N−1) , ∫∫ hXC (r1, r2)d r1d r 2=−1

Ĥ λ = T̂+λ∑
i , j

rij
−1

+V̂ ext
λ

V̂ ext
λ

E XC [ρ ] =∫
0

1

d λ∫∫ρ (r1)hXC (λ , r1,r 2)r12
−1d r1d r2

V XC [ ρ ] =∫∫ ρ (r1)hXC
λ=1

(r1, r 2)r12
−1d r1d r2



Appendix D: Several Certain Conditions
& Example E

C
 Functional

(1) Size consistency
(2) Spin scaling
(3)Lieb-Oxford lower bound 
(4) One electron limit
(removal of spurious self-interaction from Coulomb energy only)
Every (semi)local functional fulfills (1)  & (2), LDA & several GGA 
functional (like PBE) satisfy (3). Regarding (4),                      is fulfilled 
by meta-GGA, but to get                              one needs fully nonlocal (KS 
orbital dependent) functional.

Perdew-Zunger formula for LDA E
C

RAB→∞ ⇒ E [ρ A+ρ B]=E [ρ A]+E [ ρ B]

E [ρα , ρ β
]=1/2(E X [2ρα

]+E X [2 ρ β
])

E X [ ρ ] ≥ E XC [ρ ] ≥ 2.273 EXC
LDA

[ ρ ]

EC [ρ 1] = 0∧EX [ ρ ] = −J [ρ 1]

EC [ρ 1] = 0
E X [ ρ ] = −J [ρ 1]

ε C
PZ

=

Aln rs+B+C rs ln rs+D rs , rs≤1
α

1+β √(r s)+γ rs
, rs>1

r s=( 3
4π ρ (r) )

(1 /3)

EC
PZ =∫ρ (r )εC

PZ d r



Appendix E: N-discontinuity of chemical potential

Derivative of E with respect to no. of el. is discontinuous  for integers:

 Fig. from Cohen & co. “A fractional
 view of the XC Functional...”
 http://www.psi-k.org/newsletters/ 
 News_99 /Highlight_99.pdf

All (semi)local approx. for E
XC

 can't reproduce this feature of exact E.

Note that:

Thus even for exact density functional KS HOMO-LUMO gap is not equal 
to the fundamental gap (I-A)! (& optical as well, as this is the difference 
between E(N) of the 1st excited & ground state).

(∂ E
∂ n )

N+

= E (N−1)−E (N ) = I > A= E (N )−E (N+1) =(∂E
∂ n )

N−

(∂T s

∂n )
N+

= ε HOMO(N ) ≠ ε LUMO(N ) =(∂T s

∂ n )
N−
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