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Some Definitions

Theory is a group of ideas meant to explain a certain topic of science, 
such as a single or collection of fact(s), event(s), or phenomen(a). 
http://en.wikipedia.org/wiki/Theory
Theoretical physics chemistry is a branch of physics chemistry which 
employs mathematical models and abstractions of physical (chemical) 
objects and systems to rationalize, explain and predict natural 
phenomena. http://en.wikipedia.org/wiki/Theoretical_physics
Molecular Modeling ≈ Computational Chemistry  means implementation 
& application computer codes for studying properties of (hopefully 
reasonable models of real) molecules & solids ('experiments in silico').
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Non-relativistic Quantum Mechanics

Erwin with his psi can do          //Gar Manches rechnet Erwin schon
Calculations quite a few.         //Mit seiner Wellenfunktion.
But one thing has not been seen:         //Nur wissen m'ocht man gerne wohl,
Just what does psi really mean?  //Was man sich dabei vorstell'n soll.

Ernest Hückel  (Felix Bloch's transl. from German)
N-particle Ψ  is a function of 4N+1 variables {N*(3 spatial+1 spin)+  
+time} without any physical meaning.
|Ψ|2 is probability density.     eigenvalues are observablas. 
Ψ obeys time dependent (TD) Schrödinger equation (SE): 

 
Stationary cases:           , then     not TD
and Ψ is solution to time-independent SE
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Ĥ (xN )Ψ =EΨ (xN)
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Non-relativistic QM for Molecules & Solids

Exact non-relativistic (Coulomb) Hamiltonian (a. u.: e, m
e
, ħ = 1).

i. e. c infinite, no magnetic interactions.
Relativistic effects become important for core electrons in heavy
atoms (Z>40) and can be:
– included in effective core potentials, one solves SE only for 

valence electrons – works for structures, energetics, IR, UV-Vis.
– added a posteriori as perturbation to Coulomb Ĥ.
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Dealing with Nuclei

Translation of center of mass is separable from other motions.
Because m << M, we assume that e follows immediately movements 
of nuclei, thus 
has eigenfunction     
each obeying                                                                         
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)+Ĥ e(r

n , RN
)

Ψ (RN , rn)≈Ψ nuc(R
N
)Ψ e (r

n ;RN
)

T̂ nucΨ nuc=T nucΨ nuc ∧ Ĥ eΨ e=E e (R
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Born-Oppenheimer approx. in practice

Electron E forms potential for movements of nuclei.
Imagine metal balls embedded in rubber – the oscillation of balls 
(nuclei) depends on elastic constant of rubber (electron energy);
if system rotates then centrifugal force will additionally affects 
oscillation.

(after L. Piela 'Idee Chemii Kwantowej' PWN, 2005).



Does BO Approx. Work?

Well, usually; BO approx. relies on assumption that gap between 
electronic states >> gap between vibrational states.
If both gaps are comparable, then vibrational (de)excitation can 
change electronic states.
Non-BO effects:

– photochemical reactions Kang & co.JACS, 2002, 124, 129

– dissociation of molecules
– Jahn-Teller effect/Peierls distortion
– electric resistivity, superconductivity.

Treatment of non-BO effects – coupling between different Ψ
e
:
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Potential Energy (Hyper)Surface (PES) 

E
e

 can be plotted as a function of 3N cartesian nuclear coord.  
or 3N-6 (3N-5 for linear molecule) internal coord.  (translations & 

   rotations separated).

In BO approx. for a given electronic state we have uniquely define 
electron E for given set of (mean) positions of nuclei.
If masses of el. & nuc. were similar, we could only talk about total E for 
a given set of mean values of position operators of el. & nuc.

Ground state PES for H
2
O  molecule, 

assuming equal H-O bonds.

E
e

R
AB

red Ground State
blue 1st Excited 



Places Worth Visiting on PES

Stationary points:  grad
R
E

e
 = 0.

Typically the objects of interests are (local) minima, which corresponds 
to (meta)stable conformations & 1st  order saddle points, which are 
transition states in chemical reactions.

*Reaction coordinate – geometric parameter 
changing during reaction; can be bond, 
angle or more complex function of RN.
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Geometry Optimization

Main techniques of looking for E minima
(i) without gradients,
(ii) with numerical gradients & 2nd derivatives, 
(iii) with analytical gradients & numerical 2nd derivatives,
(iv) with analytical gradients & 2nd derivatives.

Typically (iii) is chosen, as the compromise between efficiency &
time of calculation, the most time consuming part is the calculation of 
2nd derivative matrix (Hessian).
Among (iii)  one of the most popular ones are (quasi) Newton-Raphson 
methods.



Newton-Raphson Method

E
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Quasi Newton-Raphson Method

PES around minimum is only approx. quadratic, iterative solution. 
      E

H  usually approximated: 

H
0
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(Dis)Advantages of Quasi-Newton method 
(& related ones)

We are looking for local minima, usually there is no guarantee that the 
structure is of the lowest E.
Results strongly depend on the initial  guess, optimization procedures 
converge to the nearest minimum (stationary point).

                                

But this is often exactly what we are looking for! Many existing 
substances are thermodynamically unstable/only kinetic stable with 
respect to global  E minima. (e. g. diamond & graphite, wurtzite & zinc 
blende, n-butane & isobutane etc.). 
All discussion above refers to finding (local) minimum of E

el
 @ 0K!

Real systems corresponds to (local) minima of total  (e+nuc) free 
energy/enthalpy at given T,p! 



Some Comments on Hessian & Frequencies

What we got from optimization is 'static' structure.  In reality atoms 
always moves, even in 0K (zero point vibrations).
Having exact H  we can calculate (√  of eigenvalues) vibrational 
frequencies in harmonic approximation. 
After optimization is completed, it is good custom to calc. freqs., to 
check if it true minimum/transition state was found.
Having harmonic freqs. one can evaluate zero point E & estimate 
vibrational contributions to free energy @ given T.
Searching for transition states usually more tricky than looking for 
minima, usually one needs really good guess structure & exact initial H.
Anharmonicity becomes important when PES strongly deviates from 
quadratic form (e. g. weak hydrogen bonds) or @ high T (thermal 
expansion of solids).



Back to Energy

But how to get electron E?

– Wavefunction based methods ('ab initio' in chemists' jargon)
Hartree-Fock method  (mean field method) – min. E[Ψ] with Ψ 
being single determinant made of N 1-electron functions 
(spinorbitals).
Correlated methods  - approx. to full Configuration 
Interaction  expansion, Ψ

CI
 being a linear combination of 

determinants.
– Density Functional Theory E[Ψ] replaced by E[ρ]
– Semiempirical/Tight Binding methods 'simplified HF', some 

integrals not calc., but fitted to exp. (spectroscopic) data.
– Molecular Mechanics  'balls & springs' molecules, classical 

treatment of atoms.



Molecular Mechanics

Molecular Mechanics  (MM) – parametrization of E
el

 as a function of 
atomic coordinates only.
In general, not to be confused with Molecular Dynamics (MD) – solving 
(classical) equation of motion for atoms (nuclei); but yes, MD usually 
relies on MM type parametrization of PES.

Fig. from Ferreira-Avila & Lacerda Mater. Res. 2008, 11, 325. 

Ebond

EMM=E streching (Rij )+Ebending (Θ ijk)+E torsional(ϕijkl)+

+ECoulomb(Rij)+Edispersion(Rij)

Enonbond



Force Fields

Force Fields (FF)/Interatomic Potentials Functions  – form (& set of 
parameters) used for description of interatomic interactions.
2-body interactions Parameters
                                                                  
                                                               
3-body interactions

4-body interactions

Cross terms, e. g. 
* Harmonic terms are the 1st non-0 terms in the Taylor expansion of E. ** Fig from:  
employees.csbsju.edu/hjakubowski/classes/ch331/protstructure/mechdynam2.html

Eharmonic = k R(R12−R0)
2 k R , R0

EMorse = Deq {[1−exp(−a (R12−R0))]
2
−1} Deq , a , R0

Eharmonic = kΘ (Θ 123−Θ 0)
2 kΘ ,Θ 0

EUrey−Bradley = kUB(R13−R0)
2 kUB ,R0

E torsion = kϕ (1±cos(ϕ1234−ϕ0)) kϕ ,ϕ 0
Eharmonic

improper torsion
= kω (ω 1234−ω 0)

2 kω ,ω 0

Ecross = kcross (R12−R0)(θ 123−θ 0)



Force Fields – Nonbonded Terms

Coulomb interactions Parameters

Atomic charge in MM is just an adjustable paremeter! 
Atomic charge is not an observable!
Short range interactions = vdW attractions+Pauli repulsion.

   
                                    In L-J potential usually m = 12 or 9, n = 6.
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How to Get Proper Parameters?

w
i
 – statistical weights; f

i
 – observables (structures, thermodynamical 

props., vibrational freqs., elastic constants etc.).
f

i
 can be exp. values or  calculated by higher level theor. methods.

Fitting C
i
 is not unique (e. g. depends on the choice of w

i
).

The performance of a given FF depends on the type of observables it 
was  fitted to - e. g.  FF fitted to structural data may describe very 
poorly cohesion energy.
There is always limited transferability of FF - e. g. parameters fitted 
for C-O bonds in alcohols don't work well for carbonates.

{C i
opt } → min{ F (C i) = ∑

i

wi [ f i
obs
− f i

calc
(C i)]

2

}



How Many Atoms Can You See? 

Generally, FFs need 'more elements' than in periodic table,  e. g. for 
good description of hydrocarbons one needs different set of 
parameters for C sp3, aliphatic sp2, aromatic sp2  & sp.
                                                           CH

3

                                                        
                                                           CH

2

                                                           ring

           Jeong & co. PCCP, 2010, 12, 2001.

United Atom/Coarse Grained Approach: 'atoms' in MM not 
necessarily are true atoms – to save time one can treat group of atoms 
as one 'superatom'.



More Tricky Issues

Polarisability:
(1) Representing atoms as dipole moments with polarisability α

i
:

(2) Dividing atoms into 2 point charges: heavy core & massless shell 
interacting via harmonic potential & via Coulomb with other cores-
shells; the positions of both core & shells are optimized.
Dick & Overhauser PR 1958, 112, 90.

(3) Variable charges - Fluctuating Charge (FQ), Electronegativity 
Equalization (EE) - E minimized with constraints on electronegativity χ:

Review:  Cieplak & co. J. Phys. Condens. Matt. 2009, 21, 333102.
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& More More Tricky Issues

MM for Metals: E expressed as a functional of electron density
Embedded Atom Method
e. g. Finnis-Sinclair potential
Finnis & Sinclair Phil. Mag. A 1984,  50, 45.

Bond Breaking/Formation
Harmonic pot. cannot describe dissociation, 
Morse pot. (roughly) correct. 
Bond Order Potentials

Abell PR-B 1958, 31, 6184; Tersoff PR-B 1988, 37, 6991; Brenner & co. JPCM 2002, 14, 783.

ReaxFF  – more complicated dependence of atom electronic state vs 
interatomic distance. van Duin & co. JPC-A 2001, 105, 9396.
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Force Fields Market

Class I: harmonic + 2-body nonb. terms, aim to reproduce structure.
(1) AMBER  (Cornell & co. JACS, 1995, 117, 5179; ambermd.org)
(2) CHARMM (Brooks & co. J. Comp. Chem. 1983, 4, 187; charmm.org) 
*Martin Karplus – Nobel Prize in chemistry 2014
(3) GROMOS (Scott & co. JPC-A, 1999, 103, 3596) (4) & many others...
(1)-(3) both names of FF & program packages
(4) UFF – all atom FF, covering all periodic table, but moderately 
accurate (Rappe & co. JACS 1992, 114, 10024).
Class II: cross terms + anharmonic ones, should reproduce vibrations.
(1) COMPASS (Sun JPC-B 1998, 102, 7338), (2) MMFF (Halgren J. Comp. Chem. 
1998, 17, 490), (3) new versions of AMBER, CHARMM, GROMOS, (4) etc.
Class III: included polarisability, electronegativity etc.
e. g. AMOEBA (Ponder & co. JPC-A 2010, 114, 2549)



MM Software

http://en.wikipedia.org/wiki/List_of_software_for_molecular_me
chanics_modeling 

Free goodies
(1) LAMMPS http://lammps.sandia.gov/
(2) Tinker http://dasher.wustl.edu/tinker/
(3) GULP https://projects.ivec.org/gulp/
Quite universal softwares, Linux & Windows portable, variety of 
FF implemented, MM & MD, handle periodic boundary conidtions. 
(1), (2) more oriented toward soft matter & (bio)organic systems, 
(3) more oriented toward solids.

http://lammps.sandia.gov/
http://dasher.wustl.edu/tinker/
https://projects.ivec.org/gulp/


Cons of FF methods

(-) Results strongly depends on (somewhat arbitrary) choice  of FF 
(potential functions form & parametrization).

(-) Limited transferability of FF from one system to the other.*

(-) Problematic description of chemical reactivity.

(-) Lack of direct insight into electronic structure & related 
spectroscopic quantities.

*Also principally it is never fully legal to combine parameters from 
different FF!



What Are Pros of FF?

      FF      
ReaxFF, 
         QESemiemp. 

       QC  DFT 

 Coarse grained 
FF

 WF 

ms

ns

ps

Time (in MD)
   
  

                 10     102    103               106                       108  Atoms
                  Å     nm                         μ                                Length

One can does calc. for large models & long time scale MD!



Simple Example

GULP input – calculations for forsterite Mg
2
SiO

4
.

#optimization @ const. pressure, Γ point phonon & elastic props. calc.

opti conp phonon prop 

#####(1) Si-O parameters: Sanders & co. J. Chem. Soc., Chem. Comm. 1984, 
#1271, fitted to quartz; (2) Mg-O: Lewis & Catlow J. Phys. C. Solid 
#State Phys. 1985, 18, 1149, fitted to Mg-O.

species               #Type of atoms, core (default) & shell, charge

Si    core  4.00000

Mg    core  2.00000

O     core  0.86902   #Polarizable core-shell potential for O

O     shel -2.86902   #Total charge on O -2

spring #Harmonic potential for core-shell of the same O

O      74.92 #Force constant

buckingham            #     A,r0,B parameters,   cutoff radius

Mg core    O     shel  1428.500 0.2945  0.00000     0.0 10.0

Si core    O     shel  1283.907 0.32052 10.66158    0.0 10.0

O  shel    O     shel 22764.000 0.14900 27.87900    0.0 12.0

three #3-body harmonic bending pot. for O-Si-O:                          
Si core  O shel  O shel         2.09724   109.47      1.9 1.9 3.5 

                              #force const., angle0,    cutoffs



Simple Example

#Initial geom. - exp. from Hazen Am. Mineral. 1976, 61, 1280.

cell

4.746000 10.180000 5.976000  90.000000 90.000000 90.000000

fractional

Si   core     0.426100    0.093900    0.250000

Mg1  core     0.000000    0.000000    0.000000

Mg2  core     0.991400    0.277200    0.250000

O1   core     0.766100    0.091900    0.250000

O2   core     0.220200    0.446900    0.250000

O3   core     0.277700    0.162800    0.033300

O1   shel     0.766100    0.091900    0.250000  #Initially shells 

O2   shel     0.220200    0.446900    0.250000  #on cores

O3   shel     0.277700    0.162800    0.033300

space

P b n m



Simple Example

#Some more detailed options

maxcyc 1000         #no. of optimization cycles

output xtl          #output options, here: final geometry in .xtl format

dump every 1 gulp.res  #dump restart file every iteration

switch rfo gnorm 0.001 #options for Rational Function Optimizer 

accuracy 12            #accuracy for electrostatic summation

Runing calculations: /(path)/gulp < GULP_input > GULP_output
& after 0.67 s on my old laptop...
                   a         b         c(Å)     V(Å3)   
Exp.         4.746  10.180   5.976   288.73  
Calc.         4.777  10.248  5.987   293.09
               K(GPa)    G(GPa)       ν  
Exp.*       128          81         0.24
Calc.**     152          75         0.29
*Suzuki & co. Phys. Chem. Mineral. 1983, 10, 38. **Hill definition.  



Summary

Most of chemistry can be explained in terms of nonrelativistic QM, 
relativistic correction can be introduced as a perturbations.

The motions of “quantum electrons” & “semiclassical nuclei” can be 
separated within Born-Oppenheimer approx. 

Within BO approx.  electron creates potential energy for (oscillatory) 
movements of nuclei. Potential Energy Surface  is E

el
 plotted as the 

function of nuclei coordinates.

Local minima of E
el

 corresponds to (meta)stable conformation of 
molecules/solids @ 0 K. For strongly bound systems  & moderate T 
they should not differ much from exp. local minima of free energy @ 
finite T.



Summary

Usually optimization techniques finds stationary points nearest to the 
guess structure – yes, it means that simulations must be done in 
conscious way.
Molecular Mechanics  is the parametrization of E

el
 as the function of 

interatomic distances, angles & torsions. 
Force Field  is the functional form of this parametrization + set of 
parameters. Parametrization (always arbitrary) is performed for the 
set of exp. data &/or 'higher level' theoretical methods.
Molecular Dynamics solves eqs. of motions for atoms – usually classical 
ones with use of FF.
MM can be used in combination with quantum mechanics methods to 
study extended systems – small part of the system is treated at more 
accurate & computationally expensive methods, while the environment 
at cheaper & less accurate MM level. For example such QM/MM 
approach is popular in biochemistry – QM level for small active site & 
MM for the rest of enzyme.



Summary

Accuracy of computational methods is accompanied by the growth of 
their computational demands. We can either perform accurate 
calculation for (often unrealistically:] small models or approximated 
calculations for large models. 



The End (For A While)

Further Reading:
– GULP manual – really nice intro to MM, lot of refs.

https://projects.ivec.org/gulp/help/manuals.html
or Gale & Rohl Mol. Simul. 2003, 29, 291.

– Good intro to MD by Furio Ercolessi
http://www.fisica.uniud.it/~ercolessi/md/

THANK YOU FOR YOUR ATTENTION!
(TO BE CONTINUED...)

This work was supported by EagLE project no. 316014  
FP7-REGPOT-2012-2013-1.

https://projects.ivec.org/gulp/help/manuals.html
http://www.fisica.uniud.it/~ercolessi/md/
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