
2005-12-31

Introduction to Molecular Modeling

Paweł Rejmak

Institute of Physics 

Polish Academy of Sciences

Hartree-Fock Method
& Beyond



In Previous Episode

Most of molecular modeling relies on non-relativistic QM.
Due to the difference in mass of electrons & nuclei it is possible to 
approx. separate their motions.
Born-Oppenheimer approx.  utilizes this fact to show, that electron E 
can be treated as potential energy for (vibrational) motions of nuclei 
(around eq. positions)

Potential Energy (Hyper)Surface  – function of E
e
 vs. nuclear coords. 

Its (local) minima corresponds to (meta)stable conformations of 
molecules.
BO approx. works as long as ΔE between el. states >> ΔE between 
vibrational states, which is the case for many 'typical' molecules & 
semiconductors, at least in the vicinity of ground state E

e
 minimum.

Molecular Mechanics  – approx. of E
e

 as the set of functions 
('force fields') of ineratomic distances, angles & torsions. 

(T̂ nuc+Ee (R
N
))Ψ nuc=(T nuc+E e(R

N
))Ψ nuc



Comment to The Previous Talk

Routine techniques of energy minimization typically find the nearest 
stationary point (minimum or transition state) to the input structure.
It is possible to look for:

transition states or short-living intermediates, which are difficult 
to study experimentally.
validate the structure proposed on the basis of indirect exp. 
techniques in lack of 'hard' structural evidence.
local environments of defects & impurities in solids (take ideal 
crystal structure, remove/replace some atoms).

It is possible to study time evolution of systems (chemical reactions, 
phase transitions etc.) by means of molecular dynamics, Monte Carlo & 
related methods.



Exemplary Energetic Profile of Chemical Reaction 

DFT study on Homogentisate Dioxygenase.

Borowski & co.
JACS 2005, 
127, 17303.



But How to Calculate Electron Energy?

– Wavefunction (WF) based methods
– Density Functional Theory
– Semiempirical/Tight Binding methods 
– Molecular Mechanics
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1-Electron Approach 
For Many Electron Systems

Due to Coulomb interactions we have many body problem, Schrödinger 
equation (SE) cannot be solved analytically, one must look for approx.

The exact WF for N fermions noninteracting* is Slater determinant 
made of  N single particles WFs – spinorbitals (SO)
*with each other, can interact with external potential

Ψ SD=
1

√N ! ∣
φ 1(x1) φ 1(x 2) ⋯ φ 1(x N)

φ 2( x1) φ 2( x2) ⋯ φ 2(x N)
⋮ ⋮ ⋱ ⋮

φ N (x1) φ N (x2) ⋯ φ N (x N)
∣ ≡ ∣φ 1φ 2⋯φ N∣,

φ i (x p)=φ (r p ,σ p) , 〈φ i(x p)∣φ i(x p) 〉=δ ij , 〈Ψ SD∣Ψ SD 〉=1

Ĥ nonint=∑
i=1

N

ĥi , ĥi=−
1
2

∇ i
2
+V̂ ext , ĥiφ i=ε iφ i , E=∑

i=1

N

ε i .

Ĥ e=∑
i

(−
1
2
∇ i

2
)+∑

i> j

1

∣r i−r j∣
+∑

I ,i

−
Z I

∣RI−r i∣ (+∑
I> J

Z I Z J

∣R I−RJ∣
=const.)



Energy of Slater Determinant WF

Energy is a functional* of WF: 
*functional – function assigning number to function

Expected value of Ĥ
e
 calc. with Slater determinant WF:

1-el. energy 

Coulomb integral    ('classical')

Exchange integral ('quantum'
          Pauli exclusion)
J,K ≥ 0 & K≠ 0 only for SO of equal spin, i. e. average Coulomb repulsion 
between el. of equal spin lower, because they are more spatially 
separated. J

aa
 = K

aa 
(no self-interaction). 

ha=〈ϕ a(1)∣−1
2

∇ i
2
+∑

I

Z I

∣RI−r1∣∣ϕ a(1)〉
J ab=〈ϕ a(1)ϕ b(2)∣ 1

r12 ∣ϕ a(1)ϕb(2)〉
K ab=〈ϕa (1)ϕ b(2)∣ 1

r12 ∣ϕ b(1)ϕ a(2)〉

E i=〈Ψ i∣Ĥ∣Ψ i〉 ( /〈Ψ i∣Ψ i〉)

E [Ψ SD ]=〈Ψ SD∣Ĥ e∣Ψ SD〉=∑
a

N

ha+
1
2
∑
a≠b

N

(J ab−K ab) (+V nn) ,



Hartree-Fock Method

HF method  is (variational) search for the best Ψ
SD

 approx. to true 
(& unknown) N electron WF.
One minimizes E[Ψ

SD
] with constraint on SO orthonormalization:

after some maths & introducing one electron Fock operators 

Because δL must be 0 for arbitrary variation δφ, we get N 1-el. equations

SO diagonalizing Fock eq. are called canonical spinorbitals, they are  
more convenient.
λ

ab
/ε

a
 are just indefinite Lagrange multipliers in minimization procedure.

〈Ψ HF∣Ĥ e∣Ψ HF〉=min〈Ψ SD∣Ĥ e∣Ψ SD〉

L=E [Ψ SD]−∑
a , b

N

(λ ab 〈ϕ a(1)∣ϕ b(1)〉−δ ab) → δ L=0

f̂ (1)ϕ a(1)=∑
b

N

λabϕ b(1) → → f̂ (1) χ a(1)=ε a χ a(1)
unitary 

transformation

δ L=∑
a=1

N

〈δ ϕ a(1)∣ f̂ (1)∣ϕa (1)〉−∑
a , b

N

λab 〈δ ϕa (1)∣ϕ b(1)〉 (+ )
complex

conjugates



Fock operators

Fock equations – pseudoeigenvalue  problem, operator depends on the 
function it acts on:

Local potential  (like Coulomb) – its action on f(x
1
) depends only on the 

value of f(x) in this point.
Nonlocal potential  (like exchange) – its action on f(x

1
) depends on the 

value of f(x) in certain neighborhood of x
1
 (can be all space).

f̂ (1) χ a(1)={ ĥ(1)+∑
b≠a

N

( Ĵ b(1)−K̂ b(1) ) }χ a(1)

ĥ(1)=−
1
2

∇
2
(1)+∑

I

Z I

∣R I−r1∣

Ĵ b(1)=〈χ b(2)∣ 1
r12 ∣χ b(2)〉≡∫∣χ b(2)∣

2
d r2

r 12

→ Ĵ b(1) χ a(1)= f (1)⋅χ a(1)

K̂ b(2) χ a(1)=〈χ b(2)∣ 1
r12 ∣χ a(2)〉 χ b(1)



Fock eigenfunctions/eigenvalues 

Assume we solved set of N Fock eqs.
We got N spinorbitals & their eigenvalues -'orbital energies'. 
f  depends on occ. orbitals, but once they are established f  became 
'good' Hermitian operator with infinite no. of eigenfunctions

we should have 1,...,N occupied & N+1,...,∞ unocc. 'virtual' SO.
In HF total E depends only on N occupied SO & only occ. SO are 
optimized, virtual SO are kind of byproduct.
Orbital energies for occ. & virt orbitals are:

 interaction with (N-1) e (OK)

      interaction with N electrons.

f̂ (1) χ a(1)=ε a χ a(1) , a=1,… , N

f̂ occ (1)χ i(1)=ε i χ i(1) , i=1,… ,∞

ε a=ha+∑
a≠b

occ

(J ab−Kab )

ε p=h p+∑
b

occ

(J pb−K pb )



What Are (Not) Orbital Energies?

Physical meaning? – none (strictly speaking). 
Total E is not a sum of orbital energies! (it would 2x count interactions)

Differences of ε
i
 are not excitation energies!

    ε
virtual

 for HF ground states too high,     
                                                      because they feel potential of N el.
       One needs to solve HF eqs. for  

 excited state.
Koopman's theorem (valid for canonical SO only!)

occ. -ε
a
 ≈ a-th ionization energy  I =E(N-1)-E(N) 

virt. -ε
p
 ≈ p-th electron affinity  A =E(N)-E(N+1) 

For exact HF I & A one needs HF optimized N±1 Ψ
SD

.

EHF=∑
a

occ.

ha+
1
2
∑
a≠b

N

(J ab−K ab) ≠∑
a

occ.

ε a=∑
a

occ.

ha+∑
a≠b

N

(J ab−K ab)

virtual

occupied

ΔE exc=Eexc(N )−E0(N ) ≠ ε virt−ε occ



Orbitals vs Orbitals

CH
4
 molecule, HF results

     Canonical Orbitals          Localized Orbitals
                                   known from school sp orbitals:)

2a
1
, ε = -25.724 eV

                                                                          ε' = -17.821 eV

1t
2
, ε = -14.877 eV

Only ε or canonical orbitals (roughly) fulfill Koopman's theorem!
Total E is the same, both sets of orbital are 'equally good'! 

unitary transformation



Let's Solve Fock Equations

It's hard, because f itself depends on yet unknown SO.
                                                         .
Iterative procedure necessary: 
for some (reasonable) guess of  N {χ

i
}0 calc. f0[{χ

i
}0], 

then find eigenfunctions of  {χ
i
}1 , calc. f1[{χ

i
}1] from them … 

repeat until convergence achieved – e. g. when the difference 
between E

tot
[{χ

a
}] in (i+1) and i-th iteration ≈ 0.

In practice Roothan-Hall method, algebraization of HF, is applied.
SO are are expanded in (finite) basis set (BS) of known functions:

 
Solving HF eqs. reduced to finding optimal expansion coefficients, 
for which E

tot
 is minimal.

f̂ [ {χ a(2)}] χ i(1)=ε i χ i(1) i=1,… ,∞
a=1,… , N

χ i(1)=∑
ν

K

Cν iϕν (1) , i=1,… , K



Comments on 'Standard' Basis Sets

Physicists choice – plane wave (PW) BS.
(+) Convergence of PW BS smoothly controlled by single parameter 
(increasing wavevector). 
(-) One needs enormous no. of PW to represent nodal structure of WF 
near nuclei – typically this part removed in pseudopotential approach & 
only monotonic tail of WF in valence region expaneded in PW.
(-) Computational costs increases with size of unit cell.
Chemists choice – Gaussian basis sets, centered on atoms.
(+) Rather simple handling 2-el. integrals.
(+) Core electrons can be treated explicitly.
(-) Nonmonotonic decrease of E with increasing size of Gaussian BS.
(-) Computational artifacts due to incompleteness of BS.
(-) Somewhat tricky procedure of differentiation E with respect to R,     
     due to dependence of basis functions on R.
See e. g. www.ccl.net/cca/documents/basis-sets/basis.html

x i
p y i

q z i
r exp(−α (r i−RI )

2
)

p+q+r=l number

exp (−k i⋅r )

http://www.ccl.net/cca/documents/basis-sets/basis.html


HF-Roothan Machinery

Dimension of basis set K ≥ N of electrons (if = 'minimal BS')

multiply by            & integrate

Remember that f depends on SO, thus now depends on basis functions!

There are ~K4 2-el. integrals! - main bottleneck of SCF calculation.
Don't panic, there are tricks to diminish the no. of needed integrals.
Again (after orthogonalization of BS) we get pseudoeigenvalue problem:

f̂ ∑
ν =1

K

Cν iϕν (1)=ε i∑
ν =1

K

Cν iϕν (1) , i=1,… , K

ϕμ
*
(1)

∑
ν =1

K

Fμν Cν i=ε i∑
ν =1

K

S μν Cν i , i=1,… ,K → FC=SC ε (K×K )

Fμν=〈μ(1)∣ f̂ (1)∣ν (1)〉 , Sμν=〈μ(1)∣ν (1)〉 , ε iα=ε iδ iα

F (C )C=SC ε → F (C ' )C '=C ' ε

F μν=Fμν (Cα i ,〈μ(1)∣ĥ∣ν (1)〉 , 〈μ (1)ν (2)∣r 12
−1∣λ (1)σ (2)〉)

overlap integrals



Self Consistent Field at Work 

SCF Procedure
1 Specify molecule {R

I
, Z

I
, no. of electrons & spin} & BS {φ

ν
}. 

2 Guess initial SO = guess initial coeffs. 
3 Calculate needed integrals (overlap, 1 & 2 el.)                                       .
4 Calculate                                                                  
5 Diagonalize F (form F' using S-1/2) to get ε & C'1.
6 Go back (again with S-1/2) from C'1 to C1.
7 Compare C1 with C0 (or E

tot
(C1) with E

tot
(C0) )*

– the same? celebrate!**
– different? go to step 4 with C1.

* In basis set

** Or not. We just calc. E
HF

 for initial configuration of nuclei, if we want to optimize 
geometry, we likely have to do SCF for many probed configurations.

Sμν , hμν , 〈μ ν∣r12
−1∣λσ 〉

F μν (Caα
0 , hμν , 〈μν ∣r12

−1∣λσ 〉)μν λ σ =1,... , K

a=1,... , N

F ' (C ' s)C ' (s+1)
=ε C '(s+1)

EHF=∑
a

occ.

∑
μν

K

Cμ aCν ahμν+
1
2
∑
a ,b

occ

∑
ν μλ σ

K

C μ aCν aCλ bCσ b 〈μν∣r12
−1∣λσ 〉−〈μν ∣r12

−1∣σ λ 〉

{C iα
0 }



Comments on SCF Convergence

As in every iteration procedure the convergence & the results strongly 
depends on initial guess.
The simplest (but not  the best!) way of getting initial SO (=set of 
expansion coeffs.) is to diagnalize F consisting only of 1-el. operators       
                   . 
Usually better guess is to take           from fast semiempirical QM calc.,
like extended Hückel method.
Even for 'good' guess SCF may have slow/oscillatory convergence. 
Various techniques have been proposed to improve SCF convergence 
(level shifting, mixing etc.).
Sometimes problem with SCF convergence indicates some fundamental 
problem – very bad 'unphysical' geometry, wrong spin state or even that 
HF is not suitable for our system (see further).

F μν
0

=hμν → F 0C0
=εC 0

{C aα
0 }



Exemplary Semiempirical Method: Extended Hückel 

Hückel was  method developed for the description of π electrons in 
conjugated hydrocarbon.
EHM is kind of simplified HF in minimal basis set.  
Fock matrix el. are approximated as:

F
μμ

=-I
μ
 & F

μν 
=-const*(I

μ
+I

ν
)S

μν
 , 

where I
α
 is α-ith. exp. atom ionization potential& is S

μν
 overlap integral.

EHM, unlike 'true' HF, is not iterative, because F does not depend on C. 
Thus HF eqs. FC=ESC can be solved very fast (E & C) for large systems.
EHM is frequently used to generate initial orbitals for SCF 
procedure (e. g. in Turbomole).
It is possible to optimize geom. in EHM, because overlaps S depends on 
interatomic distances. However, the results are rather poor.
Another drawback of EHM is lack of spin, for example singlet & triplet 
state of molecule would have the same energy in EHM.



Let's Talk About Spin

Nonrelativistic Ĥ  does not depend on spin, thus [Ŝ2,Ĥ]=[Ŝ
z
,Ĥ]=0,

thus eigenfunctions should be eigenfunctions of Ŝ2 & Ŝ
z
.

2 main flavors of HF
Unrestricted HF – each SO is either pure α & β state

Derivations in this presentations done for UHF case!
UHF Ψ

SD
 is an eigenfunction of Ŝ

z
, but (in general) not of Ŝ2.

Restricted HF  – for closed shell singlet we have N/2 spatial 
molecular orbitals, each doubly occupied.

General HF – each SO is mixture of α & β states: rarely used, because GHF Ψ
SD

 is not even 
an eigenfunction of Ŝ

z
. Note that UHF is actually more restricted case of GHF.

N α {χ a( x1)=ψ a
α (r1)ω (α 1)} & N β χ b( x1)=ψ b

β (r1)ω (β 1) , Nα+N β=N

N
2

{χ a( x1)=ψ a(r1)ω (α 1)} & N
2

χ a (x1)=ψ a (r1)ω (β 1) ,



Restricted vs. Unrestricted

For open-shell system UHF needed, for closed shell RHF can be used 
→ only N/2 Fock equations.
Spin contamination: UHF  Ψ

SD
 generally* are not eigenfunctions of Ŝ2, 

actually it can be expanded as a sum of several of different Ψ
UHF

 being 
eigenfunctions of different Ŝ2.
It is possible formulate Restricted Open-Shell HF, but this approach is 
troublesome (e. g. ROHF eqs. cannot be diagonalized).
Due to larger variational freedom (E

GHF
 ≤)E

UHF
 ≤ E

RHF
.**

*  Only for closed shell singlet
& fully spin polarized state.
** For closed shell singlet
E of all flavors of HF are

equal.                       

〈 Ŝ 2〉UHF> 〈 Ŝ2〉exact

  RHF        ROHF          UHF
singlet       dublet       'dublet'
 S2=0        S2=3/4       S2>3/4        



RHF

UHF

exact

How Good is HF?

For closed shell systems reasonably good equilibrium geometries (a bit 
too short bonds) & vibrational freqs. (somewhat too high), 
ΔE between isomers/conformers roughly fine.
HF reproduce 99% of total E – but we are interested in ΔE.
HF error in ΔE (for example between ground & exc. state) can be huge!
Spectacular HF failures:  (1)  H

2
 dissociation. RHF can't split H

2
 into 

2 open shell H; UHF, has correct asymptotic behavior, but too high E in 
the intermediate region, due to to the triplet admixture.
Ψ

H2
=c

ion
Ψ

ion
(H+-H-)+c

cov
Ψ

cov
(H-H)

near R
AB,0

 c
ion

=c
cov

=1/2 always in RHF!

but R
AB

→ ∞   c
ion

=0 & c
cov

=1

(2) F
2
 molecule unstable in HF – 

too strong repulsion between el. pairs, 
(3) no van der Waals interaction.                                                              



Hartree-Fock Summary

Hartree-Fock method  is variational search for the best single 
determinant approx. for the unknown true N-electron wavefunction.
HF method is mean field approx., namely each electron interacts with 
the average electric field created by (N-1) remaining el. 
Although HF methods delivers set of 1-el. spinorbitals, they & their 
eigenvalues should be interpreted with cautions. Particularly, the total E 
is not a sum of orbital energies & unoccupied SO are not optimized.
In order to make HF equations solvable in practice, one has to expand 
SO in some finite, thus incomplete, known basis set. The quality of HF & 
post-HF results depends on the type & size of the basis. 
HF methods correctly describes, due to antisymmetric form of 
determinant, exchange correlation, i. e. between el. of the same spin.  
Coulomb correlation  is missing, due to the mean field treatment of e-e 
interactions.



Small Details Matter

Correlation Energy E
corr

 = E
exact

 – E
HF

 ~ 1% of E < 0.

*nonrelativistic, E converged with respect to BS.
In HF electrons don't see each other, everyone interacts with average 
electric field generated by (N-1) electrons. Real electrons interacts with 
each other & it cannot be captured by Ψ

SD
 approach.

Coulomb correlation can be approx. divided in two groups.
dynamical – electrons move in a way to avoid each other (like in F

2
).

static – when N-el. WF can't be approx. by one SD (H
2
 dissociation).

E
corr

 is the largest within electron pairs, i. e. for el. occupying the same 
orbitals. Although small fractions of total E, E

corr
 becomes large 

component of ∆E in processes where no. of el. pairs 'is not conserved', 
like chemical reactions or electronic excitation.
With increasing no. of el. also interpair correlation becomes  important!



Is There Life After Hartree-Fock?

Configuration Interaction  – the exact N-electron WF can be expanded 
in a complete basis set of N-el. Slater determinants. Such BS can be 
made of all possible N-el. SD built of occ. & virt. SO from HF. 

where       is HF SD WF and           is SD n-time excited determinant, 
obtained by replacing n  occ. (in initial HF WF) SO by n virtual ones.
The coefficients c

i
 are variationally optimized.

Configuration – combination of SD, being an eigenfunction of Ŝ2.

 

Ψ CI=c0Ψ 0+∑
a ,r

ca
rΨ a

r
+ ∑

a<b ,r<s

cab
rsΨ ab

rs
+ ∑

a<b<c , r<s< t

cabc
rst Ψ abc

rst
+…

Ψ ab…m
rs…xΨ 0

singlet, 1 exc.
configuration

-

triplet, 1 exc.
configuration

+

singlet
ground state

singlet,  2 exc.
configuration



Mind The Language!

Correlation P(x
1
,x

2
)≠P(x

1
)P(x

2
)

In 'quantum chemistry' jargon by correlation  we mean Coulomb 
correlation, which is missing in HF picture, due to the averaged 
treatment of Coulomb repulsion. 
Note that, owing to antisymmetric form of SD, HF takes into account 
Fermi/exchange correlation  (simply 'exchange' in jargon), because
P finding of 2 electrons are not independent in HF.

Excitation/Excited Determinant
This is just HF SD, where 1 or more occupied SO where replaced by 
virtual orbitals. By no means it is  SD describing exc. electronic state! 
To have the latter one HF calc. for excited state electronic 
configuration are needed (& it would be poor approx. for true excited 
state WF, as HF is even worse for excited states than for ground one).



Correlated Energy At Last

CI Energy

Eigenvalues of H
CI

 are E
tot

 (correlation included!), 1st root is ground state 
energy, 2nd is the 1st excited state E etc.
In principle E are obtained from diagonalization of H

CI
, in practice from 

certain iterative algorithms giving few lowest eigenvalues of interest 
(direct CI). 
Set of SD forms BS for N el. WF, but SD itself are made of HF SO, 
which are expanded in 1-electron basis set. The quality of CI results 
depends on both levels of BS! 
(e. g. there is little sense in doing full CI in minimal 1-el. BS).
For N el. & K 1-el. basis functions one has                   n-tuply excited SD 
There is FACTORIAL (~K!)  no. of SD  & handling matrix of this size 
is impossible for anything with more than 10 electrons.

ECI=〈Ψ CI∣Ĥ∣Ψ CI 〉 → Hc=Ec

S ij=〈Ψ i∣Ψ j 〉=δ ij , H ij=〈Ψ i∣Ĥ∣Ψ j〉 , Eij=E iδ ij

(Nn )(K−N
n )



How to Tame CI Matrix

Formally, one has to deal with ~K! exc. SD -it's too much. Luckily, full CI 
(all possible SD in finite 1-el. BS) matrix can be strongly depopulated.
Brillouin's theorem
Due to the presence only 2-body interactions in our Ĥ

e
, if |n-m|>2, then

                            , e. g. Ψ
0
 doesn't mix wit triply exc. SD & higher.

(each H
ij
 block consists of (no. of i-th exc.)×(no. of j-th exc.) H

CI
 elements).

Only SD of equal Nα/Nβ interacts.
Some matrix elements are 0 due to the symmetry of studied molecule.
Still, it's just improvement from hopeless to a bit less hopeless task. 
There is a need for approximations to full CI method.

〈Ψ 0∣Ĥ e∣Ψ a
r 〉=0

〈Ψ n×exc.∣Ĥ∣Ψ m×exc.〉=0

H CI=∣
H 00 0 H 02 0 0 0 0 …

0 H 11 H 12 H 13 0 0 0 …

H 20 H 21 H 22 H 23 H 24 0 0 …

0 H 31 H 32 H 33 H 34 H 35 0 …
∣ 〈 ∣Ĥ∣ 〉=0



Truncated CI & Size Consistency

Brute force solution – truncate full CI  @ given order of exc. SD, for 
example use only CI with doubles (CID):

Size Consistency -the energy of supersystem is sum of its 
noninteracting components, i. e. for R

AB
→∞ E(A+B)=E(A)+E(B). 

Truncated CI (in general) is not size consistent!
Consider 2H

2
 molecules in minimal BS, double exc. due to single exc. in 

each molecule give 0 contribution due to symmetry, thus we have:

Ψ
CID

= c
0
                      + c

1a
                      +c

1b
                                missing   

CID cannot describe simultaneous double exc. in both molecules, because 
it demands quadruply exc. SD → E(2H

2
)<2E(H

2
). Yes, we could fix it with  

          but it won't be sc for 3H
2
 molecules (lack of sixtuple exc.) etc.

Ψ CID=c0Ψ 0+ ∑
a<b , r< s

cab
rsΨ ab

rs

Ψ abcd
rstu



Many Body Perturbation Theory

Møller-Plesset method  – treat electron correlation as perturbation to 
fictional system with Ĥ being sum of 1-electron Fock operators.

MP0: Ĥ
0
 = Σf

i
, E

0
=Σε

i
 (>true E due to 2x counting interactions).

MP1: mean field type e-e interactions → MP1=HF
MP2 & higher: correlation turned on. 
                                   

                                                   (← only 2-el. integrals in nominator)        
                                    
MP2 works well for system with reasonably large gap, otherwise 
perturbation diverge & system would be 'overcorrelated'. 
MP2 covers up to 90% of E

corr
, it describes dynamical correlation  only,

e. g. dispersion interaction between closed shell molecules.
MP2 is the least expensive corr. method ~K5  (K4  2-e integrals ×  
× K operations on coeffs.). With some tricks MP2 can be made linearly 
scaling & it was usef for periodic calc. for solids with large band gaps.

E corr
MP2=∑

a<b

occ

∑
r<s

virt ∣〈Ψ ab
rs∣r12

−1∣Ψ 0〉∣
2

ε r+ε s−ε a−ε b



Coupled Cluster

Way of truncating full CI in size consistent manner (full CC = full CI).
In truncated CC with up to n-th order exc. one considers exc. SD of any 
order, which can be presented as products of lower order exc.

                           (1) simultenous triple exc., (2) single exc. followed by     
                           double exc., (3) three consecutive single exc. 
              CI with single & doubles (CISD) misses 3ple exc., 
                            CCSD has (2) & (3) contributions.

CC amplitudes {t} are taken from set of nonlinear & novariational eqs.
CCSD(T)  - “gold standard of quantum chemistry”. Parenthesis denotes 
that triple amplitudes are approx. perturbationally.  CCSD(T) deals well 
with dynamicaly corr. & also with the cases of not too strong static corr. 
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Multi-Reference Systems – Real Troublemakers

Sometimes  even ground state cannot be represented by single HF SD:

     biradical                                                          zwitterionic

Any SD (radical or zwitterionic) from HF will be very poor starting point 
for CI calc. & one would need huge no. of exc. SD to reproduce static 
correlation. Better to take Ψ=c

1
Ψ

biradical
+c

2
Ψ

zwitterionic
, optimize both 

coefficients c
i
 & SO in both SD. 

Multi-Configurational SCF  (MC SCF) – truncated CI exp., where both 
coeff. & SO are optimized (for single SD MC SCF=HF). For good 
description of static corr. one needs smaller no. of SD in MC SCF than in 
truncated CI.
Typically only excitations within a certain range of SO close to the gap 
are considered ('active space').
It is possible to formulate multi-reference CI/CC/MPn using MC SCF as 
Ψ

0
 (yes, it's accurate & computationally expensive).
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Not So Bad, But Could Be Better...

In practice scaling is somewhat lower, e. g. if overlap between 2 basis 
function is mall, 2-el. integrals with these functions can be neglected. 
Still, scaling can't be done linear (with exception of MP2).
Geometry optimization are rarely performed using advanced corr. 
methods. Usually one uses HF/DFT/MP2 level geometry for calc. of E & 
electronic response quantities (UV-Vis, EPR, NMR etc.). Problem is with 
multireference systems, where even HF geometry may be poor.

scaling variational size consistent

MP2 K5 N Y

CISD K6 Y N

CCSD K6 N Y

MP4 K7 N Y

CCSD(T) K7 N Y

CCSDT K8 N Y

CISDT K8 Y N



Shopping Quantum Chemistry Software

http://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-
state_physics_software
Commercial
Gaussian  MP2-5, MCSCF . John Pople – Nobel prize in chemistry, 1998

Molcas MP2, CISD & QCISD, MCSCF, MRCC, CASSCF, CASPT2.
PQS MP2-4, CCSD(T), CISD, QCISD(T).
Turbomole MP2-4, CC2, CIS(D), CC2, CCSD(T).

Free for academia
ORCA MP2-4, CCSD(T), QCISD(T), MRMP2-4, MRCC.
Dalton MP2, MCSCF, CCSD(T).
NwChem  MP2-4, MCSCF, CIS-CISDTQ, QCISD, CCSD(T), CCSDTQ.
*All these codes do HF, most of them also DFT & semiempirical methods.



Post HF - Summary

Coulomb correlation is a tiny fraction of total E, but is large component 
of measurable ΔE, like ΔE of chemical reaction or electronic excitations.
Coulomb corr. can be approx. divided into dynamic, due to the correlated 
motions of electrons (always present), & static, if WF can't be 
reasonably approx. by SD (e. g. open-shell singlet biradicals).
Formally exact & thus correlated N-el. wavefunction can be expanded in 
the complete basis set of N-el. single determinant wavefunctions. Such 
basis set can be formed by all N-el. SD which can be constructed from 
all HF SO, both occupied & unoccopied in HF optimal function. This is 
Configuration Interactions approach.
In practice full CI can be done for systems with less than 10 el.
Many approximations to full CI have been proposed, most of them 
suffering from certain drawbacks  & , even if less handful than full CI, 
still computationally challenging...
Any hope for low cost correlated method?



Further Reading

Literature given in previous lecture (Piela, Jensen, Crammer, Lewars).
J. Kohanoff “Electronic Structure Calculations for Solids & Molecules: 
Theory & Computational Methods”  Cambridge 2006.
A. Szabo & N. S. Ostlund “Modern Quantum Chemistry” Dover 1996.
T. Veszprémi & M. Fehér “Quantum Chemistry: Fundamentals to 
Applications” Springer 1999.*
I. Mayer “Simple Theorems, Proofs, and Derivations in Quantum 
Chemistry” Springer 2003.*
… & many others.



The End of 2nd Part
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This work was supported by EagLE project no. 316014
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Appendix: More on Correlated Wavefunctions

It is possible to correlated explicitly many electron WF.
Due to singularity of Coulomb potential for r

12
=0  

the exact Ψ must obey 'cusp condition': 
Hyleraas function for singlet He (1929), C

klm
 variational parameters

James-Coolidge & Kołos-Wolniewicz functions for H
2
 

Accuracy equal experiments, but in practice limited to few atoms 
molecules. Also simple orbital picture, convenient for saying 'where 
electrons are', is missing.
But keep an aye on the field, it's still active: Ten-No Theor. Chem. Acc. 
2012, 131, 1070; J. Rychlewski (ed.) “Explicitly Correlated 
Wavefunctions in Chemistry & Physics” Springer 2003.
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