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In Previous Episode

@ Most of molecular modeling relies on non-relativistic QM.

@ Due to the difference in mass of electrons & nuclei it is possible to

approx. separate their motions.

Born-Oppenheimer approx. utilizes this fact to show, that electron E
can be freated as potential energy for (vibrational) motions of nuclei
(around eq. positions)

Potential Energy (Hyper)Surface - function of E_vs. nuclear coords.

nuc

Its (local) minima corresponds to (meta)stable conformations of
molecules.

BO approx. works as long as AE between el. states >> AE between
vibrational states, which is the case for many 'typical’ molecules &
semiconductors, at least in the vicinity of ground state E_minimum.
Molecular Mechanics - approx. of E as the set of functions

(‘force fields') of ineratomic distances, angles & torsions.



Comment to The Previous Talk

@ Routine techniques of energy minimization typically find the nearest
stationary point (minimum or transition state) to the input structure.

@ Tt is possible to look for:

> transition states or short-living intermediates, which are difficult
to study experimentally.

» validate the structure proposed on the basis of indirect exp.
techniques in lack of "hard" structural evidence.

» local environments of defects & impurities in solids (take ideal
crystal structure, remove/replace some atoms).

@ Tt is possible to study time evolution of systems (chemical reactions,
phase transitions etfc.) by means of molecular dynamics, Monte Carlo &
related methods.



Exemplary Energetic Profile of Chemical Reaction
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@ DFT study on Homogentisate Dioxygenase.
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But How to Calculate Electron Energy?

- Wavefunction (WF) based methods
- Density Functional Theory

- Semiempirical/Tight Binding methods

- Molecular Mechanics previous talk

Time

ms [

ns |

ps |
. 10 10* 10° 10¢ 10° Atoms
this talk 2 " Length



1-Electron Approach

For Many Electron Systems

@ Due to Coulomb interactions we have many body problem, Schrdodinger
equation (SE) cannot be solved analytically, one must look for approx.
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@ The exact WF for N fermions noninteracting* is Slater determinant

made of N single particles WFs - spinorbitals (SO)
*with each other, can interact with external potential

, (Pl(x1) 901(-’52) COI(xN)
lPSD:\/—]W §02(:x1) ¢2<:x2> 902<:xN) = @, @, @yl
qﬂNo(xl) CDN.(xz) (pN(xN)
v,(x,)=g(r,.0,). <§01(xp)‘q0l(xp)>=5y, (W sp| ¥ sp)=1

i=1



Energy of Slater Determinant WF

@ Energy is a functional* of WF: E;= < | > (W& ,))
*functional - function assigning number to function

@ Expected value of I:I calc. with Slater determinant WF:

N 1 N
E[lPSD] < SD >_Z ha_l_EZ[)(']ab_Kab) (_l_Vnn) ’
> Lelenergy  h={ 9, (1)|-L V2T 2o (1)
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» Coulomb integral Jab:<¢a(1)¢b(2) 1 ¢a<1>¢b(2>> (‘classical’)

¢b<1)¢a<z>> (‘quantun

Pauli exclusion)

1

» Exchange integral

Kab=<¢a<1>¢b<z>

12
@ J,K20 & Kz O only for SO of equal spin, i. e. average Coulomb repulsion

between el. of equal spin lower, because they are more spatially
separated. J = K_(no self-interaction).



Hartree-Fock Method

7]

HF method is (variational) search for' the best ¥_ approx to frue
(& unknown) N electron WF. < HF > mm< D >
One minimizes E[¥_ 5] with constraint on SO or"rhonor'mallza’non.

N

L=E[W )= 2, (2,4{0.(1)¢,(1))=8,) - §L=0

a,b

after some maths & m’rr'oducmg one electron Fock operators

l
OL= Z<5¢ 7 (1)lg, > Z)Lab<5¢ ‘q)b > csr(:Jn:zae’rZs>

Because 6L must be O for ar'bl’rr'ary variation 0@, we get N 1-el. equations

unitar A
:;A’ab¢b<l) _)Tr-ansfor-m);ﬂon — f(1>Xa(1>:€aXa<1)

SO diagonalizing Fock eq. are called canonical spinorbitals, they are
more convenient.

A /e are just indefinite Lagrange multipliers in minimization procedure.



Fock operators

Xl(1)

?(1>xa(1)={ (1043 (2,0)-&,(1)

b#a

@ Fock equations - pseudoeigenvalue problem, operator depends on the
function it acts on:

2 2 ZI
h(1)=—;—V (1)+;‘R —

1

ri Vi

3b(1>—<xb(2>

xb(2)>53|m(2>‘ a: ST4(1) 1 (1)=1(1)2,(1)

k2 0= 2 xa<z>>xb<1>

12
@ Local potential (like Coulomb) - its action on f(x ) depends only on the

value of f(x) in this point.
@ Nonlocal potential (like exchange) - its action on f(x ) depends on the
value of f(x) in certain neighborhood of x, (can be all space).



Fock eigenfunctions/eigenvalues

Assume we solved set of N Fock egs. f()x,(1)=¢,x,(1), a=1,....N
We got N spinorbitals & their eigenvalues -'orbital energies'.

f depends on occ. orbitals, but once they are established f became
‘good’ Hermitian operator with infinite no. of eigenfunctions

A

focc(l)Xi(1>:8iXi(1)’ i:1,...,0()
we should have 1,...,N occupied & N+1,...,% unocc. 'virtual' SO.

In HF total E depends only on N occupied SO & only occ. SO are
optimized, virtual SO are kind of byproduct.

Orbital energies for occ. & virt orbitals are:

occe

> e =h +> (Jab_Kab) interaction with (N-1) e (OK)
a#b

> £p=hp+z (pr—Kpb) interaction with N electrons.
b



What Are (Not) Orbital Energies?

@ Physical meaning? - none (strictly speaking).
@ Total E is not a sum of orbital energies! (it would 2x coum‘ interactions)

ocCc. occ. occ.

HF Zh+ Z Jab Kab ¢Z€—Zh+2 J -

aib a#b
@ Differences of £ are not excitation energues!

AE, =E (N) E,(N) # ¢

exc

—E

virt occ
* + for HF ground states too high,

virtual

because they feel potential of N el.
occupied * ‘ | One needs to solve HF egs. for
excited state.

@ Koopman's theorem (valid for canonical SO only!)
» occ. -¢ % a-thionization energy I =E(N-1)-E(N)

> virt.  -e % p-th electron affinity A =E(N)-E(N+1)
» For exact HF T & A one needs HF optimized N+1¥_.

virtual



Orbitals vs Orbitals

CH4 molecule, HF results

Canonical Orbitals Localized Orbitals
known from school sp orbitals:)

unitary transformation

.

e =-17.821eV

1t e = -14.877 eV

@ Only € or canonical orbitals (roughly) fulfill Koopman's theorem!
@ Total E is the same, both sets of orbital are ‘equally good'!




Let's Solve Fock Equations

@ TIt's hard, because f itself depends on yet unknown SO.
fHXa<2)]]Xi(1):5iXi(1) ;12211,...,0]0\7.

,,,,,

@ Tterative procedure necessary:
for some (reasonable) guess of N {x}° calc. f°[{x}°],

then find eigenfunctions of {3}', calc. f'[{x}'] from them ..
repeat until convergence achieved - e. g. when the difference
between E_ [{x }] in (i+1) and i-th iteration ~ 0.

@ Tn practice Roothan-Hall method, algebraization of HF, is applied.
SO are are expanded inK(finiTe) basis set (BS) of known functions:

X (1)=2Ci0.01), i=1,...K
Solving HF egs. reduced to finding optimal expansion coefficients,
for which E__ is minimal.



Comments on 'Standard’' Basis Sets

@ Physicists choice - plane wave (PW) BS. exp(—k, r)

(+) Convergence of PW BS smoothly controlled by single parameter
(increasing wavevector).

(-) One needs enormous no. of PW to represent nodal structure of WF
near nuclei - typically this part removed in pseudopotential approach &
only monotonic tail of WF in valence region expaneded in PW.

(-) Computational costs increases with size of unit cell.

@ Chemists choice - Gaussian basis sets, centered on atoms.
(+) Rather simple handling 2-el. integrals. x’ y!Zexp(—a(r,—R,))
(+) Core electrons can be treated explicitly. p+q+r=Inumber
(-) Nonmonotonic decrease of E with increasing size of Gaussian BS.
(-) Computational artifacts due to incompleteness of BS.

(-) Somewhat tricky procedure of differentiation E with respect to R,
due to dependence of basis functions on R.
See e. g. www.ccl.net/cca/documents/basis-sets/basis.html


http://www.ccl.net/cca/documents/basis-sets/basis.html

HF -Roothan Machinery

@ Dimension of basis set K > N of electrons (if = 'minimal BS")

fZCW% 8ZCW¢V (1), i=1,....K
ul‘rlply by ¢;(1)& integrate

=

ZFWC =e2.8,C,, i=1,.,K - FC=S8Cée

v=1

FW—< |f(1)|v > SW=< (1)|V(1)> overlap integrals &,,=¢€,0,

l IN04

@ Remember that f depends on SO, thus now depends on basis functions!
F,=F, (c Lu()]i|v (1)), <M(1)V ) A (1) z>>)
Ther'e are ~K* 2-el. integrals! - main bottleneck of SCF calculation.
Don't panic, there are tricks to diminish the no. of needed integrals.
@ Again (after orthogonalization of BS) we get pseudoeigenvalue problem:

F(C)C=8Ce —» F(C')C'=C"'¢



§ § §8 8 8§ §8 BH

Self Consistent Field at Work

SCF Procedure
1 Specify molecule {R_, Z_, no. of electrons & spin} & BS {¢ }.

2 Guess initial SO = guess initial coeffs. [CQ }
3 Calculate needed integrals (overlap, 1 & 2 ell )5‘”’ s <M V‘FI21‘7L(7> .
4 Calculate F (Caa’ hMV’ <MV ‘1’12 ‘ A’O->)ZVAO'=1,...,K

5 Diagonalize F (form F' using S?) to get £ & C'".
6 Go back (again with $?) from C'! to C'.

7 Compare C' with €° (or E,_(C") with E,_(C°) )*

- the same? celebratel**
- different?  go to step 4 with C":

F (C,S)C,S-l—l C,S-I—l

occ. occ

* In basis set EHF—ZZCW va W+2Z Z C..C,, AbCob<uv‘r1_21|)La>—<uv|r]21|0)L>

a uv a,b vuio
** Or not. We just calc. E,_ for initial configuration of nuclei, if we want fo optimize

geometry, we likely have o do SCF for many probed configurations.



Comments on SCF Convergence

As in every iteration procedure the convergence & the results strongly
depends on initial guess.

The simplest (but not the bestl) way of getting initial SO (=set of
expansion coeffs.) is to diagnalize F consisting only of 1-el. operators

F =h, — F'C'=¢C’
Usually better guess is to take [Cga}from fast semiempirical QM calc.,

like extended Hiickel method.

Even for 'good’ guess SCF may have slow/oscillatory convergence.
Various techniques have been proposed to improve SCF convergence
(level shifting, mixing etc.).

Sometimes problem with SCF convergence indicates some fundamental
problem - very bad "unphysical’ geometry, wrong spin state or even that
HF is not suitable for our system (see further).



Exemplary Semiempirical Method: Extended Hiickel

Hickel was method developed for the description of m electrons in
conjugated hydrocarbon.

EHM is kind of simplified HF in minimal basis set.
Fock matrix el. are approximated as:

F =-I & F =-const*(I+I)S |,
u uv H Hv

HH
where I is a-ith. exp. atom ionization potential& is S  overlap integral.

EHM, unlike "true’ HF, is not iterative, because F does not depend on C.
Thus HF egs. FC=ESC can be solved very fast (E & C) for large systems.

EHM is frequently used to generate initial orbitals for SCF
procedure (e. g. in Turbomole).

It is possible to optimize geom. in EHM, because overlaps S depends on
interatomic distances. However, the results are rather poor.

Another drawback of EHM is lack of spin, for example singlet & friplet
state of molecule would have the same energy in EHM.



Let's Talk About Spin

@ Nonrelativistic A does not depend on spin, thus [§2,F|]=[§Z,Fl]=o,
thus eigenfunctions should be eigenfunctions of 5% & §z.

@ 2 main flavors of HF
Unrestricted HF - each SO is either pure a & p state
N* [Xa(x1)=wZ(F1)W(Of1)} & Nﬁxb(x1)=1/ff(h)w(/31), N“+N’=N
Derivations in this presentations done for UHF casel
UHF ¥_ is an eigenfunction of §z, but (in general) not of 52.

Restricted HF - for closed shell singlet we have N/2 spatial
molecular orbitals, each doubly occupied.

> )= r)ol@)] & 5 x,lx)=y,(r)o (),

General HF - each SO is mixture of a & p states: rarely used, because GHF ¥ o IS hot even
an eigenfunction of §z. Note that UHF is actually more restricted case of GHF.



Restricted vs. Unrestricted

For open-shell system UHF needed, for closed shell RHF can be used
— only N/2 Fock equations.

Spin contamination: UHF ¥_ generally* are not eigenfunctions of s,
actually it can be expanded as a sum of several of different ¥ _ being
eigenfunctions of different 52. <§2>UHF> <Sz>exact

It is possible formulate Restricted Open-Shell HF, but this approach is
troublesome (e. g. ROHF egs. cannot be diagonalized).

Due to larger variational freedom (E_ _<E, < E **
RHF ROHF UHF
singlet dublet '‘dublet’
* Only for closed shell singlet 52=0 s2=3/4 S2>3/4

& fully spin polarized state.

+

** For closed shell singlet
E of all flavors of HF are

+ 4+
equal. + + +



How Good is HF?

@ For closed shell systems reasonably good equilibrium geometries (a bit
too short bonds) & vibrational freqs. (somewhat too high),
AE between isomers/conformers roughly fine.

@ HF reproduce 99% of total E - but we are interested in AE.
HF error in AE (for example between ground & exc. state) can be huge!

@ Spectacular HF failures: (1) H, dissociation. RHF can't split H, into

2 open shell H; UHF, has correct asymptotic behavior, but too high E in
the infermediate region, due to to the triplet admixture.

LPHZ: Cionwion(H+- l—'-)-|-(:covl.lj (H_ H)

hear R~ ¢ =c =1/2 always in RHF!

cov

but RAB—> oo cion:O & C_ =1

v

(2) F, molecule unstable in HF -

too strong repulsion between el. pairs,

(3) no van der Waals interaction.



Hartree-Fock Summary

Hartree-Fock method is variational search for the best single
determinant approx. for the unknown true N-electron wavefunction.

HF method is mean field approx., namely each electron interacts with
the average electric field created by (N-1) remaining el.

Although HF methods delivers set of 1-el. spinorbitals, they & their
eigenvalues should be interpreted with cautions. Particularly, the total E
is not a sum of orbital energies & unoccupied SO are not optimized.

In order to make HF equations solvable in practice, one has to expand
SO in some finite, thus incomplete, known basis set. The quality of HF &
post-HF results depends on the type & size of the basis.

HF methods correctly describes, due to antisymmetric form of
determinant, exchange correlation, i. e. between el. of the same spin.
Coulomb correlation is missing, due to the mean field tfreatment of e-e
intferactions.



Small Details Matter

@ Correlation Energy E__ =E__ -E, ~1%of E<O.

e

*nonrelativistic, E converged with respect to BS.

@ In HF electrons don't see each other, everyone interacts with average
electric field generated by (N-1) electrons. Real electrons interacts with
each other & it cannot be captured by ¥_ approach.

@ Coulomb correlation can be approx. divided in two groups.

» dynamical - electrons move in a way to avoid each other (like in F)).
» static - when N-el. WF can't be approx. by one SD (H, dissociation).

@ E__is the largest within electron pairs, i. e. for el. occupying the same
orbitals. Although small fractions of total E, E__ becomes large

component of AE in processes where no. of el. pairs 'is not conserved’,
like chemical reactions or electronic excitation.

@ With increasing no. of el. also interpair correlation becomes important!



Is There Life After Hartree-Fock?

@ Configuration Interaction - the exact N-electron WF can be expanded
in a complete basis set of N-el. Slater determinants. Such BS can be
made of all possible N-el. SD built of occ. & virt. SO from HF.

abc abc

W =c, W, D W+ DY Wty Y g

a<b,r<s a<b<c,r<s<t

where ¥ is HF SD WF and ¥, is SD n-time excited determinant,
obtained by replacing n occ. (in initial HF WF) SO by n virtual ones.

The coefficients c.are variationally optimized.

@ Configuration - combination of SD, being an eigenfunction of S2.
singlet singlet, 1 exc. triplet, 1 exc. singlet, 2 exc.

ground state  configuration configuration confiiura’rion

5
+ + 4+ +4 —




Mind The Language!

@ Correlation P(x x )#P(x )P(x,)

In 'quantum chemistry’ jargon by correlation we mean Coulomb
correlation, which is missing in HF picture, due to the averaged
treatment of Coulomb repulsion.

Note that, owing to antisymmetric form of SD, HF takes into account
Fermi/exchange correlation (simply ‘exchange’ in jargon), because
P finding of 2 electrons are not independent in HF.

@ Excitation/Excited Determinant

This is just HF SD, where 1 or more occupied SO where replaced by
virtual orbitals. By no means it is SD describing exc. electronic statel

To have the latter one HF calc. for excited state electronic
configuration are needed (& it would be poor approx. for true excited
state WF, as HF is even worse for excited states than for ground one).



Correlated Energy At Last

«

C
* Eneray EC1:<IPCI|}AI|'1UCI> — Hc=Ec

S,=(w|w \=5, H,=(W|HW,) E=EJ,

i i i’ i

Eigenvalues of H_ are E__ (correlation included!), 15" root is ground state
energy, 2" is the 1°" excited state E etc.

In principle E are obtained from diagonalization of H_, in practice from

CI’
certain iterative algorithms giving few lowest eigenvalues of interest
(direct CI).

Set of SD forms BS for N el. WF, but SD itself are made of HF SO,
which are expanded in 1-electron basis set. The quality of CI results
depends on both levels of BS!

(e. g. there is little sense in doing full CT in minimal 1-el. BS).
N\[K-N
For N el. & K 1-el. basis functions one has |, |\ ,» | n-tuply excited SD

There is FACTORIAL (~K!) no. of SD & handling matrix of this size
is impossible for anything with more than 10 electrons.



How to Tame CI Matrix

@ Formally, one has to deal with ~K! exc. SD -it's too much. Luckily, full CT
(all possible SD in finite 1-el. BS) matrix can be strongly depopulated.

@ Brillouin's theorem <'I/0‘ﬁe 'I/;>=0
@ Due to the presence only 2-body interactions in our I:Ie, if |n-m|>2, then

<,Pn><exc. H|'meexc'>:0, e.g. ¥, doesn't mix wit triply exc. SD & higher.
H, 0 H, O 0 O 0 ...
0O H H H 0 O 0 ...
H,= 1 12 13 + ) +
H, H, H,, H,, H,, 0 0 .. < H >=O
O H, H,, H; H;,, H; 0 + +

(each Hu' block consists of (no. of i-th exc.)x(no. of j-th exc.) H__ elements).

@ Only SD of equal N/NP interacts.
@ Some matrix elements are O due to the symmetry of studied molecule.

@ Still, it's just improvement from hopeless to a bit less hopeless task.
There is a need for approximations to full CI method.



Truncated CIT & Size Consistency

Brute force solution - truncate full CI @ given order of exc. SD, for
example use only CI with doubles (CID): rS yyprs
P Y Vep=co¥ ot Z Car ¥ at

a<b,r<s

Size Consistency -the energy of supersystem is sum of its
honinteracting components, i. e. for R, —eo E(A+B)=E(A)+E(B).

Truncated CT (in general) is not size consistent!

Consider 2H, molecules in minimal BS, double exc. due to single exc. in
each molecule give O contribution due fo symmetry, thus we have:

+ +— ++

C, missing

Tk = —

CID cannot describe simultaneous double exc. in both molecules, because
it demands quadruply exc. SD — E(2H,)<2E(H,). Yes, we could fix it with

g but it won't be sc for 3H, molecules (lack of sixtuple exc.) etc.

abc




Many Body Perturbation Theory

@ Moller-Plesset method - treat electron correlation as perturbation to
fictional system with H being sum of 1-electron Fock operators.

» MPO. I:IO = 2f, E=X¢ (>true E due to 2x counting interactions).

» MP1: mean field type e-e interactions — MP1=HF

» MP2 & higher: correlation turned on.
2

occ Vvirt

EMP2 _ Z Z

a<br<s gr_l_gs_ga_gb

||,

(« only 2-el. integrals in nominator)

@ MP2 works well for system with reasonably large gap, otherwise
perturbation diverge & system would be ‘overcorrelated’.

@ MP2 covers up to 90% of E__, it describes dynamical correlation only,
e. g. dispersion interaction between closed shell molecules.

@ MP2 is the least expensive corr. method ~K> (K* 2-e integrals x
x K operations on coeffs.). With some fricks MP2 can be made linearly
scaling & it was usef for periodic calc. for solids with large band gaps.



Coupled Cluster

@ Way of truncating full CI in size consistent manner (full CC = full CI).

@ TIn truncated CC with up to n-th order exc. one considers exc. SD of any
order, which can be presented as products of lower order exc.
D Ce= 2Lt 2 2, f}i”é+7 7 7 £alyl
a<b<c a<b<c a b<c

* (1) simultenous triple exc., (2) single exc. followed by
double exc., (3) three consecutive single exc.

" * CT with single & doubles (CISD) misses 3ple exc.,
CCSD has (2) & (3) contributions.

@ CC amplitudes {t} are taken from set of nonlinear & novariational egs.

@ CCSD(T) - "gold standard of quantum chemistry”. Parenthesis denotes
that triple amplitudes are approx. perturbationally. CCSD(T) deals well
with dynamicaly corr. & also with the cases of not too strong static corr.



Multi-Reference Systems - Real Troublemakers

Sometimes even ground state cannot be represented by single HF SD:
biradical N 0Q it
iradica _/O\_<—>_/O\_ “sis/9N\g M erionic

Any SD (radical or zwitterionic) from HF will be very poor starting point
for CI calc. & one would need huge no. of exc. SD to reproduce static
correlation. Better to take Y=cV¥ +c ¥ , optimize both

1 biradical 2 zwitterionic
coefficients c. & SO in both SD.

Multi-Configurational SCF (MC SCF) - truncated CI exp., where both
coeff. & SO are optimized (for single SD MC SCF=HF). For good
description of static corr. one needs smaller no. of SD in MC SCF than in

truncated CLI.

Typically only excitations within a certain range of SO close to the gap
are considered (‘active space’).

It is possible to formulate multi-reference CI/CC/MPn using MC SCF as
Y, (yes, it's accurate & computationally expensive).



Not So Bad, But Could Be Better...

@ In practice scaling is somewhat lower, e. g. if overlap between 2 basis
function is mall, 2-el. integrals with these functions can be neglected.
Still, scaling can't be done linear (with exception of MP2).

@ Geometry optimization are rarely performed using advanced corr.
methods. Usually one uses HF/DFT/MP2 level geometry for calc. of E &
electronic response quantities (UV-Vis, EPR, NMR etc.). Problem is with
multireference systems, where even HF geometry may be poor.



Shopping Quantum Chemistry Software

http://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-
state_physics_software

@ Commercial
Gaussian MP2-5, MCSCF . John Pople - Nobel prize in chemistry, 1998
Molcas MP2, CISD & QCISD, MCSCF, MRCC, CASSCF, CASPT2.
PQS MP2-4, CCSD(T), CISD, QCISD(T).
Turbomole MP2-4, CC2, CIS(D), CC2, CCSD(T).

@ Free for academia
ORCA MP2-4, CCSD(T), QCISD(T), MRMP2-4, MRCC.
Dalton MP2, MCSCF, CCSD(T).
NwChem MP2-4, MCSCF, CIS-CISDTQ, QCISD, CCSD(T), CCsSDTQ.
*All these codes do HF, most of them also DFT & semiempirical methods.



Post HF - Summary

Coulomb correlation is a tiny fraction of total E, but is large component
of measurable AE, like AE of chemical reaction or electronic excitations.

Coulomb corr. can be approx. divided into dynamic, due to the correlated
motions of electrons (always present), & static, if WF can't be
reasonably approx. by SD (e. g. open-shell singlet biradicals).

Formally exact & thus correlated N-el. wavefunction can be expanded in
the complete basis set of N-el. single determinant wavefunctions. Such
basis set can be formed by all N-el. SD which can be constructed from
all HF SO, both occupied & unoccopied in HF optimal function. This is
Configuration Interactions approach.

In practice full CI can be done for systems with less than 10 el.
Many approximations to full CI have been proposed, most of them
suffering from certain drawbacks & , even if less handful than full CI,
still computationally challenging...

Any hope for low cost correlated method?



Further Reading

@ Literature given in previous lecture (Piela, Jensen, Crammer, Lewars).

@ J. Kohanoff "“Electronic Structure Calculations for Solids & Molecules:
Theory & Computational Methods” Cambridge 2006.

@ A.Szabo & N. S. Ostlund "Modern Quantum Chemistry” Dover 1996.

T. Veszprémi & M. Fehér "Quantum Chemistry: Fundamentals to
Applications” Springer 1999.*

@ I. Mayer "Simple Theorems, Proofs, and Derivations in Quantum
Chemistry” Springer 2003.*

@ .. & many others.



The End of 2™ Part
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Appendix: More on Correlated Wavefunctions

It is possible to correlated explicitly many electron WF.

:E'P(’”lzzo)

Hyleraas function for singlet He (1929) C,,. variational parameters
W(’ﬁ”z e arzzcklm rtr,) r1+r2 "’1 rz‘

k
kim 7
James-Coolidge & Kotos-Wolniewicz functions for H, 'P(rl r,)oc Rlz)

Due to singularity of Coulomb potential for r =0 ( oW ) 1
0

the exact ¥ must obey 'cusp condition': ory,

12
Accuracy equal experiments, but in practice limited tfo few atoms

molecules. Also simple orbital picture, convenient for saying ‘where
electrons are’, is missing.

But keep an aye on the field, it's still active: Ten-No Theor. Chem. Acc.
2012, 131, 1070; J. Rychlewski (ed.) “Explicitly Correlated
Wavefunctions in Chemistry & Physics" Springer 2003.
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