Introduction to Density
Functional Theory and the
LAPW method

Y. Melikhov

Group of X-ray Spectroscopy and Microanalysis,
Laboratory of X-ray and Electron Microscopy Research,
Institute of Physics, PAS

EAgGL

WIEN2k & Turbomole Workshop European Action towards Leading Centre
ALBA Synchrotron Nov. 16-20, 2015 for Innovative Materials




i Acknowledgements

‘-\ ALBA Synchrotron Light facility located in Cerdanyola del Vallés, Spain
ALB A
This project is co-funded by the European Union within the x
framework of the EAgLE Project No. 316014 Capacities/Research EAg L
POte ntlal FP?'REG POT'2012'2013'1 European Action tovyards Leafding Centre

a Centre for the Computational Science at Interdisciplinary Centre for

g m Mathematical and Computational Modelling, Warsaw, Poland
The program package WIENZ2k allows to perform electronic structure
calculations of solids using density functional theory (DFT).
First Polish workshop and the 22-nd workshop in the history of the WIEN2k code:

‘WIEN2k and SPECTROSCOPY: HANDS-ON WORKSHOP” which was held at
Institute of Physics PAS, Warsaw, Poland in Fall 2014.

Group of X-ray Spectroscopy and Microanalysis, Laboratory of X-ray and Electron
Microscopy Research, Institute of Physics, PAS:
Dr. Iraida Demchenko, Mr. Yevgen Syryanyy, Dr. Pawel Rejmak

i

7 I N



i Outline

= Introduction into DFT
= What is ab-initio approach? What do we solve?
= DFT foundations
= Exchange-correlation functionals

s Three basis methods to solve Kohn-Sham
equations

= Augmented plane waves method
= Some practical aspects of calculations
= Examples of applications of DFT
= Core level spectroscopy (XPS, XAS, EELS)

= Conclusion

L th‘



i What Is an Ab-Initio approach?

Ab-initio approach is the approach which is utilised to
describe/model experimentally observed physical properties
of a particular material starting only from:

- crystal structure, or

- chemical composition (this is an absolute goal!)

Wide applicability to various quantum systems:
- single atom,

- molecule,

- solid state matter

To be useful, numerical modelling (i.e. performing numerical

experiments successfully) requires faster computers and
bigger resources.
Ehgl.




i Solid State — Reminder

Crystal structure

When solving Schrodinger equation quantum

Unit cell (a volume in space that fills space entirely when
translated by all lattice vectors)

Atomic basis (Wyckoff positions) ¢
Space group \
Reciprocal lattice (Brillouin zone) \

b

a

mechanics states that:

Potential has lattice periodicity

Electron density as well

But wave function does not have

Periodic boundary conditions are employed
Bloch functions and Bloch theorem

E/hl.



i What do We Solve?

The fundamental equation governing a non-relativistic
guantum system is time-dependent Schrddinger equation:

4 dqj(ﬁf M)A (i

where H Hamiltonian operator
P({rkt) many-body wavefunction

If Hamiltonian is time independent, the equation becomes
time-independent Schrodinger equation:

w({rjit)="(r))exp(-1ER/t) H|¥)=E|¥)

LS Ehgl.




i What do We Solve?

We solve time-independent Schrodinger equation for many-
body electron system to find eigenstates and eigenvectors:

—~

H|¥)=E[¥)

where =T +V +V +E + etc. Hamiltonian operator

ext Int

./ e




i What do We Solve?

~T+V_. +V +E + etc.

ext int

./JQ o

2
T =_ h ZVZ _n- v| (The Born-Oppenheimer A
2m, < ! 2 | approximation is to ignore
© 0 the kinetic energy of the
I, 1.e. M, 5>
v _ _Z Z,ez \I’IUC|6I, l.e — Y
ext
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i What do We Solve?

We solve time-independent Schrodinger equation for many-
body electron system to find eigenstates and eigenvectors:

H|'¥)=E[¥)

) =|¥(E,...,F,)) Many-body wavefunction
for the electrons

I Spatial and spin electron coordinate
Many-body wavefunction for the electrons is a function of
the number of electrons in a system

Too many variables, therefore, Schrodinger equation as is
cannot be solved for complex systems!!!
Ehgl.




‘L DFT foundations — |

(1/2 of) 1998 Nobel Prize in Chemistry to
Prof. Walter Kohn
for fundamental work in density functional theory

Prof. Walter Kohn

|7



i DFT foundations — I

Hohenberg-Kohn 15t theorem and its corollary (1964):

- The total energy of a many-body system is a unique
functional of electron density.

- Such functional is independent of external potential but is
unknown.

- All properties of the system (ground and excited) are
completely determined given only the ground state density.

E/hgl.




i DET foundations — Il

Hohenberg-Kohn 2" theorem and its corollary (1964):

- The universal functional for the energy can be defined in
terms of electron density.

- The exact ground state energy of the system is the global
minimum value of this functional.

- The density that minimizes the functional is the exact
ground state density.

- The functional alone is sufficient to determine the exact
ground energy and density.

Ehgl.




i DFT foundations — IV

Kohn-Sham (based on Hohenberg-Kohn theorems for an
exact theory of many-body systems) proposed a new
approach to the many-body interacting electron system via
ansatz (1965):

Auxiliary independent-particle system is formulated instead
but with interacting density;

Density (electron density) is the main variable now;

This newly formulated system will have the same total
energy of the ground state;

All many-body effects will be counted through additional
functional: exchange-correlation functional, which becomes
an extremely important factor now

L EAQK‘



i DFT foundations — V

Kohn-Sham ansatz changes the many-body interacting
electron system into an auxiliary independent-particle system
which is described by Kohn-Sham (Schrodinger-like) equation:

[I:IKS ‘Wi>:gi ‘l//i>]

where H,. is the effective Hamiltonian, constructed out of
the following functional:

E.=T+V+E, , =T.+E.+E, +E, +E_,=T. +E, +E . +E_,

Exchange-
Correlation
not known
nfortunatel




i DFT foundations — VI

Kohn-Sham ansatz changes the many-body interacting
electron system into an auxiliary independent-particle system
which is described by Kohn-Sham (Schrodinger-like) equation:

{HKS ‘Wi> =& ‘l//i>}
where H,. is the effective Hamiltonian, constructed out of
the following functional:

E. =T, [n]+1j () g E o [N]+ [V NP

ext
A

Exchange-
Correlation

not known N-N
unfortunatel and other

Ehgl.




i DET foundations — VII

4 N-body Schrddinger Equation: A
, 1
[ SV Zr r‘ Zr 3 ZZR R‘] rh=ev¥(r})

9 e (r)= ... ¥ ({r Hdr, dr, . Y
4 Kohn- Sham Equatlons A
el e R R\ ZR m ‘\
9 N (r)=2pi(r

hese are quasi-
particles, or Kohn-
Sham eigenstate




Exchange-Correlation Functionals — |

4 Kohn-Sham Equations: N

Lo 1en(r) o5 Zin(r) 0 I 202,
( 2V‘+2J‘r—r’oIr Zj‘r’—ﬁ,d“rzzl?l—ﬁj

1#J

_ T=amt Y,

Within DFT we can write the exact exchange-correla lon interaction as

Eebl gl o

which is simply the Coulomb interaction between an electrgn at r and
the value of its XC hole n_(r,r’) at r’. Unfortunately, n,(r,r’) is
unknown and, therefore:

{Exact exchange-correlation functional is unknown !!!]




i Exchange-Correlation Functionals — |l

All functionals are approximations:

- Reports of ‘Failures of DFT" is actually a report of a failure
of the XC functional,

No functional (so far) is accurate(?) for all properties of
Interest:

- No matter what functional is ‘invented’ someone will always
find a case where it fails

Any functional can be applied to any electronic structure
problem:

- In this sense it is ab initio but we use experience and
Intuition to decide which one to use

L @}



Exchange-Correlation Functionals — Il

Citation: AIP Conf. Proc. 577, 1 (2001);
doi: 10.1063/1.1390175

HEAVEN OF CHEMICAL ACCURACY

Perdew and Schmidt A
“‘Jacob’s ladder of density functional [ unoccupied {¢;} generalized RPA
approximations for the exchange- GE)
correlation energy” Ex = hyper-GGA
N S

T and/or V?n —9--8— meta-GGA
Citation: J. Chem. Phys. 123, 062201 ol =
(2005); doi: 10.1063/1.1904565 vn <451 coa
Perdew et al. c
“Prescription for the design and S LSD
selection of density functional

approximations: More constraint
satisfaction with fewer fits”

L a}
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i Exchange-Correlation Functionals — IV

Types of functionals: Non-empirical

Local (Spin) Density Approximation L(S)DA:
- assuming that the charge density varies slowly

EL2 0] = [ n(F) e ()
Generalized-Gradient Approximation GGA:

ESAn]= _[n(r')gxC (n,vn)dr
1 Vn

5§§A[n, \Vn\]: er?nlFo(r,s) 1, o S

Enhancement factor

meta-GGA:
ElAn]= J'n(r)gxC (n, vn,v2n,z)dr

E/hl.




Exchange-Correlation Functionals — V

Types of functionals: Non-empirical

- L(S)DA (PZ2) is simplest but good approximation.

- L(S)DA and GGA (PW91, PBE, rPBE, WC, PBEsol, HTBS) are constructed
based on exact conditions and, therefore, the reliability can usually be
predicted

- For structural properties, GGA is (on average) more accurate than the LDA:

- LDA still best for 5d-series (Pt, Au). PBE of GGA too large !

- PBE of GGA best for 3d series (Fe, Ni, ..). LDA too small !

- WC, PBEsol, HTBS of GGA best compromise for all elements

- van der Waals: LDA overbinds, GGA underbind (sometimes non-
bonding !)

- For cohesive properties, rPBE of GGA is much better than LDA

- For electronic structure, LDA and GGA produces very similar results,
however, band gaps are underestimated by 50 % (therefore, use”TB-mBJ

correction)

E/hgl.

strictly speaking empirical




Exchange-Correlation Functionals — VI

Types of functionals: Non-empirical

- For systems with strongly correlated electrons (3d, 4f), often LDA and GGA
give qualitatively wrong results:

- metal instead of insulator,

- too small magnetic moments or even non-magnetic instead of AFM
cuprates,

- no (too small) structural distortions,
- orbital order, ....

- meta-GGA (TPSS, MGGA _MS2).
- as good as best GGA for atomization energies (rPBE)

- as good as best GGA for structural parameters (WC or PBEsoI)
- not so bad for van der Waals systems either

- However, analytic form for meta-GGA is not possible due to kinetic

energy density variable r(r)%z\wi(r)\z , therefore, calculations are difficult
- Dateline for LDA, GGA and meta-GGA functionals:

- PZ 1981, PW91 1992, PBE 1996, rPBE 1999, TPSS 2003, WC 20086,
PBEsol 2008, revTPSS 2009, MGGA_MS2 2013
Ehgl.




Exchange-Correlation Functionals — VI

Types of functionals: Empirical

Hybrid (B3LYP, PBEO, HSE) with a few (?) empirical parameters

General strategy for construction of hybrids is to mix exact exchange (i.e.
Hartree-Fock which is non-local) and (semi-)local-density energies:

[EXHF Erect Z j )¢*(r;)¢i (r,) drlder

PBEO:  EP*[n]=E*[n]+a(E/ [®]- EP*[n])

with a=20-25-60% for semiconductors and insulators
with a very small for metals

B3LYP: E-[n]—(1-)EL +aE!" +bES™ + CEL + (1~ )™

with a, b, and c being adjustable parameters




Exchange-Correlation Functionals — VII|

Types of functionals: Empirical

YS-PBEO is PBEO with extra screening parameter 4 :
- YS-PBEO reduces to PBEO when 4 —0

- YS-PBEO reduces to PBE when A —

- YS-PBEOQ is similar to HSE06 when 4 =3% u

4 B ionic =
] sp o L
14 TmO By ™
06 1 e Tmx S Z =
T— au=0.147+0634/~= Q/ m 9’|.|
] [ ]
0.5 - caom S
=
5 0
304 w 4
=] > ® E}"
] w v v (@)
0,3 o > _
1 © a=0.25
-4 L L L L L L o LRI L L L L |
0 5 10 15 0 0,2 0,4 0.6 0.8

Gapexp [eV] (dieITectric constant)- x
EAgL




Exchange-Correlation Functionals — IX

Types of functionals: Orbital dependent (LDA+U, EECE)

- Fixes a very specific problem that LDA/GGA can get wrong in
highly correlated systems with localized 3d/4f orbitals:
- LDAJ/GGA functionals tend to over-delocalize electrons;
- Electrons see their own potential, self-interaction;
- On-site Coulomb repulsion is not well accounted for;
- In alot of cases the correct structure will be predicted but
energy gap (if any) will be too small,

- Main idea of DFT+U is to separate electrons into two subsystems:
- localized d- or f-electrons for which the Coulomb interaction
should be taken into account, and
- delocalized s- and p-electrons which could be described by
using an orbital-independent one-electron potential (i.e.
LDA/GGA)

Ehgl.




Exchange-Correlation Functionals — X

Types of functionals: Orbital dependent (LDA+U, EECE)

LDA+U functional:
Eo " [n] =Eq [n]"‘ E b [{nia}]_ E,. [{nia}]

where E,, [{nia}]: ;U Zninj IS mean-field Hubbard term
i#]
1 . . .
Eq. [{nia}]: —~“UN(N —1) is to getrid of double-counting of
2 some of the orbitals counted in DFT

- Addition of the Hubbard term leads to the following effect:
- If the state is initially less than half occupied, the Hubbard
potential is positive and tend to repulse electrons. On the other
hand, if the occupation is more than half filled, the potential is
attractive and encourage electrons to localized on this
particular site
E/hgl.




Exchange-Correlation Functionals — XI

" Lah

Na (A2) -I-r-::‘;: N
Relative error in percent in the oy T
calculated lattice constants with
respect to their experimental Foh) A
values NP
Cu (A1) :
ThAl) e O -
LiCl (B1) C= )
0@ ‘g{;fgﬂ/, o .
TIC (81) ﬂ'/}’f‘ f’:‘,_ g
™ (Z?ry (811*%_ &;
womn L Gak| bk
HIN (B1 SN R
Citation: Phys. Rev. B 79, 085104 (2009); L
- FeAl (B2) — '::
doi: 10.1103/PhysRevB.79.085104 N N
Haas et al. e X} S 5
« . . —+—LDA AlP (B3) ¢ -
Calculation of the lattice constant of > socea ==
. . . . ” . so GaP (B3) S N
solids with semilocal functionals e Gﬂaz(?a% 31
O InAs (B3)
_Ié_lgggsl | | | | | | CE(‘SJIQC(‘EBI?: |
2.5

[+
] -565 -5 45 4 35 -3 -25 -2 Ea1|(':5 E)Jti%)?l 0
- ¥ 4 100(a2- 22!/
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i Exchange-Correlation Functionals — XIl|

All functionals are approximations:

- Reports of ‘Failures of DFT" is actually a report of a failure
of the XC functional,

No functional (so far) is accurate(?) for all properties of
Interest:

- No matter what functional is ‘invented’ someone will always
find a case where it fails

Any functional can be applied to any electronic structure
problem:

- In this sense it is ab initio but we use experience and
Intuition to decide which one to use

L @}



i What do We Solve?

The universal functional for the energy can be defined in

terms of electron density:

- the global minimum value being the exact ground state
energy of the system, and

- with density being the exact ground state density.

Search for this minimum gives the Kohn-Sham equations:

4 Kohn-Sham Equations: A
1, 1¢n(r) ., Z,n(r") oy Z,Z,
E‘zV”er el er—rzd ZR’I—RJ

I¢J

N Tt

/
/ These are quasi-
Assuming that exchange- particles, or Kohn-
correlation functional is Sham elgenstateq
known (better say: set)!!!

LS EAKQL




i Solving Kohn-Sham equations — |

Assume intial Update effective
guess for n(F) A Hamiltonian H, (n(F))

v

Solve Kohn-
Sham equation

ﬁKS‘Wi>:gi‘Wi>

Calculate output: ‘1'
energy, forces, Update density
stresses, charge N NO) (=
density, band- n(r)_ ;‘l//i (r)(
structure, etc.

_
m 7 @}




Solving Kohn-Sham equations — II

Linear combination of some “basis functions”:

v

Solve Kohn-
Sham equation v (r)= ;Ckn o, (r)
H s ‘Wi> = & ‘Wi>

This coverts a problem into a set of linear
equations which in matrix representation is
called “generalized eigenvalue problem”:

v

. N\ HC=ESC
Special mathematical _ |
methods and tricks H S Hamilton and overlap matrices
are used to make C eigenvectors
these calculations as E eigenvalues

\_ fast as possible. )

L @}




Three Basis Methods to Solve — I

Kohn-Sham (Schrodinger-like) equation:
I:IKS ‘l//i> = & ‘l//i>

llllllllllllllllllllllllllllll -

Plane waves:: , —S "¢ exp(ig-T)
g

Pros:| Perfect for periodic systems, simple to implement and to work
with, complete basis set, Plane waves do not depend on the atomic

positions

Cons}]the number of plane waves needed is quite large, empty
space is included in the calculation

Programs; Quantum Espresso sometimes also called PWSCF (GPL),
Abinit (GPL), VASP (Commercial), ...




Three Basis Methods to Solve — I

Kohn-Sham (Schrodinger-like) equation:
I:IKS ‘l//i> = & ‘l//i>

Pseudopotentlal approximation:

- Plane waves form a “complete” basis set,

- However, the number of plane waves, if all
electrons are taken into account, would be
very large

- Core-electron wave functions are localized,
however,

- Valence-electron wave function are far from
free-electron like near atomic cores and show
oscillation behaviour due to the requirement
to be orthogonal to core-electron wave
functions




Three Basis Methods to Solve — IV

Kohn-Sham (Schrodinger-like) equation:
I:IKS ‘l//i> = & ‘l//i>

Pseudopotential approximation:

- To make plane wave basis set feasible, the
exact pseudopotential is substituted by a much
weaker (and physically dubious)
pseudopotential allowing not to consider core
electrons and, therefore, removing these
oscillations

- This approximation works because only
valence electrons participate in chemical
bonding and core electrons are almost
unaffected, and also

- The detail of valence wave functions near the
atomic nuclei is unimportant




Three Basis Methods to Solve —V

Kohn-Sham (Schrodinger-like) equation:
I:IKS ‘l//i> = & ‘l//i>

Planewaves: , (r)=Yc_expli(K +G)-)
G

- Wave functions are represented as sum of plane waves, with summation
over reciprocal lattice vectors

- Infinite number of plane waves is required theoretically, however,
practically, the number of plane waves is truncated by the cut-off kinetic
energy E

cut ‘—» — 2

k+G‘SEM

- The quality of the plane wave basis set and, therefore, the results depend

on E.



Three Basis Methods to Solve — VI

Kohn-Sham (Schrodinger-like) equation:
I:IKS ‘l//i> = & ‘l//i>

Pros:|appeal of atomic orbitals, speed of calculation (for Gaussian
functions analytical calculations of integrals is performed), small
basis sets, vacuum almost does not matter

Cons] Non-orthogonal, depend on atomic position

Programs| Gaussian (Commercial), Turbomole (Commercial),
SIESTA (Academic)...




i Three Basis Methods to Solve — VI

Kohn-Sham (Schrodinger-like) equation:

I:IKS ‘l//i> = & ‘Wi>
)
Spherical harmonics >

nlm values:




ﬁ Three Basis Methods to Solve

Kohn-Sham (Schrodinger-like) equation:
I:le ‘Wi> = & ‘Wi>

— VIII

Spherical
harmonics in
intra-atomic
spheres

Cons] Require matching inside and outside functions

Programs| WIEN2k (Commercial), EXCITING (GPL), ...

L

EA}.



i Augmented plane waves — |

P\ ei(IZ+K)T
37]

Augmented plane waves ,

Z A;nuz(r” E)Yem ('N) I ]
/m

PWs :atomic: PWs

— e ———
— i ——— -

L}
|
|
i
|
|
|
|

- u(r,e) are the numerical solutions of the radial Schrédinger
equation in a given spherical potential for a particular energy ¢

- AKX coefficients need to be found to match the PW

- However, these basis functions are energy dependent (which we
need to find)

- This leads to a non-linear eigenvalue problem

- Numerical search for these energies is possible, however, it is
computationally very demanding.

Suggested by J.C.Slater, 1937 @}




‘L Augmented plane waves — |

Problem is linearized

Augmented plane waves - Linearized Augmented plane waves
Z A;nuﬂ (I", E)ng ('N) Z lA;r?]Uz (I", E, )"‘ B;r%uﬁ (I", E, )}Yém ('N)
/m /m

APW LAPW

 o(6E) i U(Rym,Ep)=0
antibonding state, i.e.
Top of the band

d(u,(r,E))/dr=0 at E, ;;,,, and Ryt
......... ' ~ < bonding state, i.e.
DOS ’
Ryt Bottom of the band

Suggested by O.K.Andersen, 1975 E}



‘L Augmented plane waves — ll|

~
)
a4
~—
-
Bhn
—
)
=
88

Example: Titanium

.

O._.

4p

4s
3d

3p
3s

2p

2s

1s

-

(\/alences states: A

- High in energy
- Must use delocalized

\ wavefunctions )

/Semi-core states: )
- Medium energy

- Not completely confined inside the
specified sphere, i.e. charge
leakage )

~

ore states:
Very low in energy
- Fully confide inside the specified

-
c

\_ Sphere )

EA}.




i Augmented plane waves — IV

These basis functions are used

Summary of LAPW method to describe valence states.

- (exp[i(IZ+ IZ)F] rel
¢K (I’)= ) Z [A;‘rﬁ'z“zug (I", Ef’})+ Bj‘n;‘z“zu? (I", Efg )}Yzm (rw) re Sa
L /m

A (F)= 0 res,
@10 [Aztous (i, Ep )+ BEue (i, Ef, )+ Cus (v, ES, .., (F)) Fes

Additional basis functions are added for low-lying
valence states which are called semi-core states.

Suggested by D.J.Singh, 1991 @}



Augmented plane waves — V

These basis functions are used
to describe valence states.

Summary of APW-lo method

. (exp[i(li# K)F] Fel
A5 p ) res
L /m

0 FreS
[Azrous (', Ef, )+ Belus (r, ES, Y () Fes,

¢,!:T10(F)={

A (F)= 0 resS
@10 [Aztous (i, Ep )+ BEue (i, Ef, )+ Cus (v, ES, .., (F)) Fes
B e

Additional basis functions are added for low-lying
valence states which are called semi-core states.

Suggested by E.Sjostedt, x
L.Nordstrom, D.J.Singh, 2000 EAgL




ﬁ Augmented plane waves — VI

FP-(L)APW-lo method

For basis functions one can use:
- LAPW (plus LO),

- APW-lo (plus LO),

- or mixed

For potential one can use:
- Muffin-tin approximation, or
- FP, i.e. Full Potential

Practically, the numbers which control
the accuracy of the solution are:

- The cut-off for the plane waves:

- The cut-off for the angular functions

|7

RK

L

max

Mmax




i Solving Kohn-Sham equations

Assume intial Update effective
guess for n(F) A Hamiltonian H, (n(F))

v

Solve Kohn-
Sham equation

ﬁKS‘Wi>:gi‘Wi>

Calculate output: ‘1'
energy, forces, Update density
stresses, charge N NO) (=
density, band- n(r)_ ;‘l//i (r)(
structure, etc.

_
m 7 @}
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Some practical aspects of calculations — |

Brillouin zone integration (K-points)

One scheme to use:

- Many quantities require integration over BZ

- Computationally, the integrals are approximated by summation

- Point group symmetry is utilized fully

- Monkhorst-Pack grid scheme constructs equally spaced
points

- Good for SCF

n(F)=~ ;;wj\%(ﬁj,rr

Another scheme to use:

- Linear tetrahedron method
Which divides BZ into tetrahedral
Interpolation is performed

Good for DOS



Some practical aspects of calculations — Il

&control . . .
calculation = 'scf Typical QE input file:
prefix = 'Si_excl’, \ type of calculations and

/ § where to find and store files

&system 7
ibrav = 2, variables that specify the system
celldm(1) = 10.26, / under study
nat= 2, — variables that control the algorithms
ntyp = 1, used to reach the self-consistent
ecutwfc = 20 | solution of KS equations for the

/ ) electrons

&electrons _
mixing beta=0.7 [ name, mass and pseudopotential

ATOMIC_SPECIES present in the system

5i28.086 Si.pbe-rrkj.UPF type and coordinates of each atom
ATOMIC_POSITIONS (alat) / in the unit cell

510.00.00.0 _ _
coordinates and weights of the k-

510.250.25 0.25 | ) ) .
K_POINTS (automatic) —_/ points used for BZ integration

m|m 666111 | EAQL

/ | / used for each atomic species




Some practical aspects of calculations — Il

To run calculations:

prompt > espresso dir/bin/pw.x < si.scf.in > si.scf.out

Output (from file si.scf.out)

! total energy = —-15.84452°726 Ry
convergence has been achieved in 6 i1terations
Is it all?

Unfortunately, no, even for scf calculations!!!




Some practical aspects of calculations — IV

-15.64

-15.66
-15.68 r
-15.7 -
-15.72
-15.74
-15.76
-15.78
-15.8 -
-15.82 r
-15.84

-15.86

As the solution is numerical, the
convergence has to be checked for:

B Ecut

-15.794

- number of k points

"si.etot_vs_ecut" —— "‘si.eiot_vs'_nks” utl3 —

-15.796

-15.798

-15.8

-15.802 |

-15.804

-15.806 |

-15.808

5

10 15 20 25 30 35 40 2 3 4 5

Keep in mind that the higher the parameters are set,

the (much!) longer it takes to compute

EA}L



Some practical aspects of calculations — V

Strictly speaking the correct values are:

- electron density n(r), and
- total energy E,,

Total energy is a very useful quantity as it can be used to get
structures, heats of formation, adsorption energies, diffusion barriers,
activation energies, elastic moduli, vibrational frequencies,...

Ag bulk - E,; vs. a

® ecut = 60 Ry
® ecut = 50 Ry
—— Murnaghan fit
—— Murnaghan fit

-36.660

-36.670

©

T
3

L

-36.680 r

-36.69

O L 1 L 1 L 1 L 1 L 1 L 1 L 1 | 1 L
69 71 73 75 77 79 81 83 85
alaul]

Is NiO magnetic? NM, FM, AFM?

Solve three different problems:
- nonmagnetic,

- ferromagnetic, and

- antiferromagnetic

Compare E, for all three cases
The lowest E,, Is for AFM

E/hgl.



Some practical aspects of calculations — VI

Supercell approach for modelling non-periodic systems

..............................................................

If the system is non-periodic, periodicity
must be included via constructing
‘'supercell’:

For molecule or cluster, add empty
space from all sides.

4 ”‘
For surface, add empty space from a ‘Q%Q\CL\U%%(\OQ\%

required side and add more material

from the opposite side. S S i
For defect, add more material from all cr.\‘xf c;\‘ b % —
Sldes. g,') ': v " o i—( g ’ i -: o i J _ 4 3 —_ { é

All that is needed to reduce the D A e
interaction between repeated images W e N e e N
as much as possible!

L a}




Some practical aspects of calculations — VI

Supercell approach for modelling non-periodic systems

..............................................................

If one doubles the unit cell in one : g
direction, it is enough to take only half & ég,

of the k points in the corresponding : .

direction in the reciprocal space "*\ & "\( H"\c ‘ H‘«

One has to be careful when comparing

Y ',_' " 'f’. 581 f
energies in cells with different size ‘pc\oc\ci\o%%;\og\-g@

unless either equivalent sampling of k- : :
points is used or one is converged in S S

.
H
H
.
H
H H H
. ' .
: . o q » o
H ! 4 ¢ ¢
) 1 ) y -3 J o g W} ) &) A L
H / v 4 v o 4 d d / H
H 1 1 ) ) 1 ] ) !
r o o S S con. o i Y -
o ”

the total energy in both cases

P 1 " L " r ) - 2 w \'. r L P - 1 - P
e o L a5 i L e e

. 4 v d v # 4 / v

- J ) J ) . t \I_ ! N
& C. .a:j‘ — _,:_,' 3 o 3 '.-;'r s " .;,' ~ .d;;‘ \ '4;

EAng




Some practical aspects of calculations — VIII

Defects (e.g. core-hole) handling s

Calculated C K-edge x-ray absorption
spectra in diamond (with core-hole) for
different supercell sizes, compared with

05F

045F

16 atoms

experimental data g o
;-; 0'35; 54 atoms
weaker interaction 2 ok
"il.o ° ‘% 0255 128 atoms ;
2 E 3
® ® 2 02F —
o o : 250 atoms/
0.15F
[ ] ] :
o ° . ° o1
0.0sE
O [ ] O @ :
° ° o ° 0
@ @ @ @
@ @ @ @
o o o °
@ @ @ @

2x2 supercell with
one core hole by supercell
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‘L Examples of applications of DFT

Elemental Crystal Structure (using GGA)

001 experimentally found to be fec©

/ Ehcp . Efcc
B o N 0 F

> (kJ"mOIC) -7%.73 418 -34.15 1.00 -14.64

=326 37 43.63 -16.81

« VASP-PAW >
< SGTE doma > -180
< Saunders eral " -180
K Sc Ti AY Cr | Mn | Fe In | Ga Ge | As Se Br
026 448 | 331 | os 091 | 301 | 77 0% | osm | 03 | 4m | 3543 | 300
500 | €00 [ 350 [ 285 | -lo0 | 24 29 | om | -1m
0.00 €00 | —480 | 182 | -1.00 o0 | -100
Rb Y Zr | Nb | Mo | Tc | Ru Cd In Sn Sh Te I
-0.01 2183 | 3@ | 30 | 114 | 63 | -1079 2100 | 035 | 0% | -394 | 2340 | oo
€00 | 7@ | 3% | 36 | -wo0 | 1250 08 | 037 | -1a
0.00 760 | -500 | -500 | -1000 | -1250 065 | -02
Cs | Ba Bf | Ta W Re | Os Hg Tl Pb Bi P A
006 | 0.4 €8 | 305 | 1w | 626 | -1326 a5 | 180 | 1s0 [ 40 o At
020 000 | 400 | 55 | -1100 | -13.00 207 | 431 [ o030
000 [ o020 000 | -6% | -600 | -1100 | -13.00 431 | o3
La Ce Pr | Nd | Pm | Sm Dv | He Er T b Lu
268 | s | 207 1% | 177 | 1. & | 118 | m 385
Ac | Th | Pa U Np | Pu ’ 5 .
Fr | Ra | o5 | 400 | 00 | 5 | 3461 | o0 |Am | Cm | Bk | Cf | Es | Fm | Md | Ne | Lx




i Examples of applications of DFT

Charge and spin density for zb-CaAs:

28 - GaAs
= | |PM T
g7 MoA BaAs
7] 955 .~ “Cash
s " _SrAs '
3 6— Mgp.l,‘,’ u
8 | "CaAs
= _BaN =
C:U 5- SI'NI. CaP
8 r _ -7 ]
2 41 g CaN FM
O -

4 5 6 7 8

Equilibrium lattice

constant (A)

As As
///—_\\ (/“\\
X @ ca ® )




i Examples of applications of DFT

lonic relaxation, i.e. structure optimization

The positions of atoms in the unit cell are not known
(e.g. for surface relaxation).

Assume Intial
positions of atoms

The structure

IS optimized!
\/_

|7

T

Perform SCF
calculation until it
Is fully converged

Move ions

A4

Calculate
forces




‘L Examples of applications of DFT

Nudged Elastic Band (NEB) method

will find a minimum energy pathway connecting two local minima and, therefore,
can be used to calculate reaction pathways and energy barriers.

An example: diffusion of a single vacancy in 16-atom cell of Be

Starting structure with

Ending structure with
vacancy in (0,0,0)

vacancy in (1/6,1/3,1/4)

ATOMIC_POSITIONS crystal
Be 1/2 0.0 0.0
Be 0.0 1/2 0.0
Be 1/2 1/2 0.0
Be 0.0 0.0 1/2
Be 1/2 0.0 1/2

ATOMIC_POSITIONS crystal
Be 1/2 0.0 0.0
Be 0.0 1/2 0.0
Be 1/2 1/2 0.0
Be 0.0 0.0 1/2
Be 1/2 0.0 1/2

Be 0.0 1/2 1/2 ® Minima Be 0.0 1/2 1/2

Be 1/2 1/2 1/2 ® Saddle Point Be 1/2 1/2 1/2

Be 1/6+0.0 1/3+0.0 1/4+0.0 Be 0.0 0.0 0.0

Be 1/6+1/2 1/3+0.0 1/4+0.0 Be 1/6+1/2 1/3+0.0 1/4+0.0
Be 1/6+0.0 1/3+1/2 1/4+0.0 Be 1/6+0.0 1/3+1/2 1/4+0.0
Be 1/6+1/2 1/3+1/2 1/4+0.0 Be 1/6+1/2 1/3+1/2 1/4+0.0
Be 1/6+0.0 1/3+0.0 1/4+1/2 Be 1/6+0.0 1/3+0.0 1/4+1/2
Be 1/6+1/2 1/3+0.0 1/4+1/2 AE Be 1/6+1/2 1/3+0.0 1/4+1/2
Be 1/6+0.0 1/3+1/2 1/4+1/2 Be 1/6+0.0 1/3+1/2 1/4+1/2
Be 1/6+1/2 1/3+1/2 1/4+1/2 Be 1/6+1/2 1/3+1/2 1/4+1/2




‘L Examples of applications of DFT

Nudged Elastic Band (NEB) method

will find a minimum energy pathway connecting two local minima and, therefore,
can be used to calculate reaction pathways and energy barriers.

After AE is found

(from DFT), it can

be used in kinetic

Monte Carlo method

(~10k of atoms) I:{)
to study complex Y 'S :
events as a function n=344 t=70ns n=1000 t=8pus
of time and ' ' ® & |
temperature.

n=7902 t=10pus n=65720 t=1ms




ﬁ Examples of applications of DFT

Electronic Structure of FeO

> [7 ) L/ e Fe d majority s
L [ Spin
[ ’\/-_ 601 Fe d minority spin
[ N X Fe s states
i~ 0 = — < — O p states
<t i - T~ 2 40T
O 2 s } E L
Ol & [ . @ |
mz -5 %Zz g : . |
-10
0.0 5.0
r L K T T X Energy (eV)
70
e e e —— ]
e N SoT 1
= 0 - S50t 4
”t+> > == .| |
= z ]
e St e |
Al S S==—F [=S— 8§} _
"4 /\-"“"- x 10k
10! 00 LAY
I L K T I X -10.0 5.0

Energy (eV)

Figures taken from “LDA and the other

approaches: Successes and Failures” lecture x
EAgL




ﬁ Examples of applications of DFT

CrO, half-metallic ferromagnet

spin-up spin-down
metallic gap
3
>
o
S
&
-10}-
-15k
: .Z:'. B o ostetiis — | = i::: ... j — M s RO P -
-20 [- ..... o el o) ase ST I R A AR Bt

ZATEMNYASZUR VW XAT Z A PEMYAS ZUR W XArF

EAgL



i Examples of applications of DFT

Calculation of cohesive energy:

cohes _ [ crystal atom atom
[EAXBy =E _XEA a yEB ]

E“  SCF energy of crystal calculations

E5oT SCF energy of calculations of atom A

EZ°"  SCF energy of calculations of atom B

SCF calculations of atoms should be:

- performed in a supercell with one atom in a ~30 bohr FCC box
- The same RMT, RKmax as for crystal

- 1 k-point

Calculation is pretty much similar in case of defect formation
energy, however, one need to calculate chemical potential as
- well of an element, i.e. extra calculations are required. @




i Examples of applications of DFT

Supercell approach for modelling non-periodic systems

SRS

Bonding charge density of an
O atom on the Al (001)
surface calculated by QE and
visualized by XCrysDen

Simulation of the STM image of
the AlAs (110) surface by QE and
visualized by XCrysDen

EA}L



i Outline

= Introduction into DFT
= What is ab-initio approach? What do we solve?
= DFT foundations
= Exchange-correlation functionals

s Three basis methods to solve Kohn-Sham
equations

= Augmented plane waves method
= Some practical aspects of calculations
= Examples of applications of DFT
= Core level spectroscopy (XPS, XAS, EELS)

= Conclusion

L th‘



Core level spectroscopy — XPS

Estimation of core-level shift:
- l.e. estimation of ionization potential of core e-
- Core-eigenvalues calculated during SCF are NOT a good
approximation:
- Fastest (qualitative agreement) but expect errors ~10-50 eV
- Slater’s “transition state” with half occupancy:
- Fast (better agreement) but expect errors ~1-3 eV
- A-SCF-calculation with and without core-hole: E,(N) — E,(N-1):
- Slow (good agreement) because supercell must be used, and
- Two calculations has to be performed

CN 1s exp.(eV) £ A-SCF
TiC 281.5 264.7 281.9
Ti4C4 281.5 263.3 281.1
TiN 397.0 377.5 397.1

E/hgl.




Core level spectroscopy — XAS, EELS

WIENZ2k has an option to calculate interaction of solid with:

Light (XAS, more specifically XANES), or
Electrons (EELS, more specifically ELNES)
L/

Core electrons are excited into a '”K?;E
conduction band

Transition is described by Fermi's

LEH
ﬁ - — d2g —
[+ B )

Energy(eV)

“golden rule” between initial (core) and B ="

final (conduction-band) state and the e- LT kKL Dos

or photon

XAS is calculated via XSPEC or OPTIC t3 i ;pasz ! S

EELS is calculated via TELNES3 T e
& 15 Jevels

EAKQL



Core level spectroscopy — XAS, EELS

No core hole, i.e. ground state (or sudden approximation)
- Usually not a good approximation (maybe in metals?)
Z+1 approximation also not good (e.g. replacing C by N)

In absorption spectroscopy, core-hole has a large effect on
the spectrum (make sure that supercell is used)

- Remove 1 core e on ONE atom in the supercell,
add 1 e to conduction band

- Remove 1 core e- on ONE atom in the supercell,
add 1 e as uniform background charge

- Fractional core hole is possible



Core level spectroscopy — XAS, EELS

WARNING (or Reminder):

- DFT is a ground state theory!
- It should falil for the prediction of excited state properties
- However, for many systems it works pretty well

- Sometimes, adding a LO improves description of high-
energy states
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i Conclusion

v Density Functional Theory (DFT) is an excellent
computational tool widely used in physics, chemistry and
materials science

v DFT is an exact many-body theory in principle, but we do
not have a practical exact functional

v’ Accurate for many simple and complicated systems, but ...
v ... Keep in mind limitations

v Many codes available (GPL, Academic, Commercial),
tutorials, workshops, schools:

“WIENZ2K and Spectroscopy: Hands-on Workshop”
was held on September 29 — October 2, 2014
at Institute of Physics PAS, Warsaw, Poland.




