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What is an Ab-Initio approach? 

Ab-initio approach is the approach which is utilised to 

describe/model experimentally observed physical properties 

of a particular material starting only from: 

 - crystal structure, or 

 - chemical composition (this is an absolute goal!) 

 

Wide applicability to various quantum systems: 

 - single atom, 

 - molecule, 

 - solid state matter 

 

To be useful, numerical modelling (i.e. performing numerical 

experiments successfully) requires faster computers and 

bigger resources. 

4 
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Solid State – Reminder 

Crystal structure 

- Unit cell (a volume in space that fills space entirely when 

translated by all lattice vectors) 

- Atomic basis (Wyckoff positions) 

- Space group 

- Reciprocal lattice (Brillouin zone) 

 

When solving Schrödinger equation quantum  

mechanics states that: 

- Potential has lattice periodicity 

- Electron density as well 

- But wave function does not have 

- Periodic boundary conditions are employed 

- Bloch functions and Bloch theorem   
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What do We Solve? 

where 

6 

The fundamental equation governing a non-relativistic 

quantum system is time-dependent Schrödinger equation: 

  
  trH

t

tr
i i

i ;
d

;d 
 



H


Hamiltonian operator 

  tri ;


 many-body wavefunction  

 EH


If Hamiltonian is time independent, the equation becomes 

time-independent Schrödinger equation: 

       tEirtr ii /exp; 



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What do We Solve? 

where 

7 

We solve time-independent Schrödinger equation for many-

body electron system to find eigenstates and eigenvectors: 

 EH


.ˆ
int etcEVVTH IIext 


Hamiltonian operator 

Kinetic 
e--N 

e--e- 

N-N 
Some 
other 
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What do We Solve? 
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The Born-Oppenheimer 
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the kinetic energy of the 
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What do We Solve? 
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We solve time-independent Schrödinger equation for many-

body electron system to find eigenstates and eigenvectors: 

 EH


 Nrr





,,1 Many-body wavefunction 

for the electrons 

ir


Spatial and spin electron coordinate  

Many-body wavefunction for the electrons is a function of 

the number of electrons in a system 

Too many variables, therefore, Schrödinger equation as is 

cannot be solved for complex systems!!! 
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DFT foundations – I 
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Prof. Walter Kohn  

(1/2 of) 1998 Nobel Prize in Chemistry to  

Prof. Walter Kohn  

for fundamental work in density functional theory 
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DFT foundations – II 
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Hohenberg-Kohn 1st theorem and its corollary (1964): 

- The total energy of a many‐body system is a unique 

functional of electron density. 

- Such functional is independent of external potential but is 

unknown. 

- All properties of the system (ground and excited) are 

completely determined given only the ground state density. 
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DFT foundations – III 
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Hohenberg-Kohn 2nd theorem and its corollary (1964): 

- The universal functional for the energy can be defined in 

terms of electron density. 

- The exact ground state energy of the system is the global 

minimum value of this functional. 

- The density that minimizes the functional is the exact 

ground state density. 

- The functional alone is sufficient to determine the exact 

ground energy and density. 
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DFT foundations – IV 

13 

Kohn-Sham (based on Hohenberg-Kohn theorems for an 

exact theory of many-body systems) proposed a new 

approach to the many-body interacting electron system via 

ansatz (1965):  

- Auxiliary independent-particle system is formulated instead 

but with interacting density; 

- Density (electron density) is the main variable now; 

- This newly formulated system will have the same total 

energy of the ground state; 

- All many-body effects will be counted through additional 

functional: exchange-correlation functional, which becomes 

an extremely important factor now 
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where          is the effective Hamiltonian, constructed out of 

the following functional: 

DFT foundations – V 

14 

Kohn-Sham ansatz changes the many-body interacting 

electron system into an auxiliary independent-particle system 

which is described by Kohn-Sham (Schrödinger-like) equation:  

iiiKSH  


KSH


extXCHSextXHCSextKS EEETEEEETEVTE 

independent 

N-N 
and other 

Hartree 

Exchange-
Correlation 
not known 

unfortunately 
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where          is the effective Hamiltonian, constructed out of 

the following functional: 

DFT foundations – VI 

15 

Kohn-Sham ansatz changes the many-body interacting 

electron system into an auxiliary independent-particle system 

which is described by Kohn-Sham (Schrödinger-like) equation:  

iiiKSH  


KSH


 
   

   



 rdnVnErdrd

rr

rnrn
nTE extXCSKS






2

1

Kinetic 

N-N 
and other 

Hartree 
Exchange-
Correlation 
not known 

unfortunately 
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DFT foundations – VII 

16 

These are quasi-

particles, or Kohn-

Sham eigenstates 
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
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Exchange-Correlation Functionals – I 
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Exact exchange-correlation functional is unknown !!! 

Kohn-Sham Equations: 
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DFT rrrn
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*

Within DFT we can write the exact exchange-correlation interaction as 

   
 

  



 rdrd

rr

rrn
rnnE xc

xc





 ,

2

1

which is simply the Coulomb interaction between an electron at     and 

the value of its XC hole                  at      . Unfortunately,                is 

unknown and, therefore: 

 

r
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Exchange-Correlation Functionals – II 
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All functionals are approximations:  

- Reports of ‘Failures of DFT’ is actually a report of a failure 

of the XC functional; 

No functional (so far) is accurate(?) for all properties of 

interest: 

- No matter what functional is ‘invented’ someone will always 

find a case where it fails 

Any functional can be applied to any electronic structure 

problem: 

- In this sense it is ab initio but we use experience and 

intuition to decide which one to use 
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Exchange-Correlation Functionals – III 
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Citation: AIP Conf. Proc. 577, 1 (2001); 

doi: 10.1063/1.1390175  

Perdew and Schmidt  

“Jacob’s ladder of density functional 

approximations for the exchange-

correlation energy” 

Citation: J. Chem. Phys. 123, 062201 

(2005); doi: 10.1063/1.1904565  

Perdew et al. 

“Prescription for the design and 

selection of density functional 

approximations: More constraint 

satisfaction with fewer fits” 
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Exchange-Correlation Functionals – IV 
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Local (Spin) Density Approximation L(S)DA: 

 - assuming that the charge density varies slowly 

      rdnrnnE XC

LSDA

XC




Types of functionals: Non-empirical  

Generalized-Gradient Approximation GGA: 

       rdnnrnnE XC

GGA

XC


,

meta-GGA: 

       rdnnnrnnE XC

GGAm

XC


 ,,, 2

     
3/43/1

,
1

,,,
n

n
s

n
rsrFnnn ssXC

LDA

XC

GGA

XC


 

Enhancement factor 
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Exchange-Correlation Functionals – V 
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Types of functionals: Non-empirical  

- L(S)DA (PZ) is simplest but good approximation. 

- L(S)DA and GGA (PW91, PBE, rPBE, WC, PBEsol, HTBS) are constructed 

based on exact conditions and, therefore, the reliability can usually be 

predicted  

- For structural properties, GGA is (on average) more accurate than the LDA: 

- LDA still best for 5d-series (Pt, Au). PBE of GGA too large ! 

- PBE of GGA best for 3d series (Fe, Ni, ..). LDA too small ! 

- WC, PBEsol, HTBS of GGA best compromise for all elements 

- van der Waals: LDA overbinds, GGA underbind (sometimes non-

bonding !) 

- For cohesive properties, rPBE of GGA is much better than LDA  

- For electronic structure, LDA and GGA produces very similar results, 

however, band gaps are underestimated by 50 % (therefore, use TB-mBJ 

               correction) 

strictly speaking empirical 
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Exchange-Correlation Functionals – VI 

22 

Types of functionals: Non-empirical  

- For systems with strongly correlated electrons (3d, 4f), often LDA and GGA 

give qualitatively wrong results: 

- metal instead of insulator,  

- too small magnetic moments or even non-magnetic instead of AFM 

cuprates,  

- no (too small) structural distortions,  

- orbital order, …. 

- meta-GGA (TPSS, MGGA_MS2): 

- as good as best GGA for atomization energies (rPBE) 

- as good as best GGA for structural parameters (WC or PBEsol) 

- not so bad for van der Waals systems either 

- However, analytic form for meta-GGA is not possible due to kinetic 

energy density variable                     , therefore, calculations are difficult 

- Dateline for LDA, GGA and meta-GGA functionals: 

- PZ 1981, PW91 1992, PBE 1996, rPBE 1999, TPSS 2003, WC 2006, 

PBEsol 2008, revTPSS 2009, MGGA_MS2 2013 

 
i

i rr
2

)(
2

1
)( 
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Exchange-Correlation Functionals – VII 
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Hybrid (B3LYP, PBE0, HSE) with a few (?) empirical parameters 

Types of functionals: Empirical  

General strategy for construction of hybrids is to mix exact exchange (i.e. 

Hartree-Fock which is non-local) and (semi-)local-density energies: 

       





ji ji

ijjiexact

x

HF

x rdrd
rr

rrrr
EE

,

21

22

*

11

*

2

1 





PBE0:         nEEnEnE xxxcxc

PBEHFPBEPBE0  a

with α=20-25-60% for semiconductors and insulators 

B3LYP:       VWNLYPB88HFLSDAB3LYP 11 ccxxxxc EccEbEaEEanE 

with a, b, and c being adjustable parameters 

with α very small for metals 
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Exchange-Correlation Functionals – VIII 
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Types of functionals: Empirical  

YS-PBE0 is PBE0 with extra screening parameter    :  
- YS-PBE0 reduces to PBE0 when  

- YS-PBE0 reduces to PBE when  

- YS-PBE0 is similar to HSE06 when  

 




0

 2
3

(dielectric constant)-1 

α=0.25 
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Exchange-Correlation Functionals – IX 
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Types of functionals: Orbital dependent (LDA+U, EECE) 

- Fixes a very specific problem that LDA/GGA can get wrong in 

highly correlated systems with localized 3d/4f orbitals: 

- LDA/GGA functionals tend to over-delocalize electrons; 

- Electrons see their own potential, self-interaction; 

- On-site Coulomb repulsion is not well accounted for; 

- In a lot of cases the correct structure will be predicted but 

energy gap (if any) will be too small; 

 

- Main idea of DFT+U is to separate electrons into two subsystems: 

- localized d- or f-electrons for which the Coulomb interaction 

should be taken into account, and 

- delocalized s- and p-electrons which could be described by 

using an orbital-independent one-electron potential (i.e. 

LDA/GGA) 
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Types of functionals: Orbital dependent (LDA+U, EECE) 

LDA+U functional: 

          idciHubxcxc nEnEnEnE  DFTUDFT

is to get rid of double-counting of 

some of the orbitals counted in DFT 

   



ji

jiiHub nnUnE
2

1
where  is mean-field Hubbard term 

    1
2

1
 NUNnE idc 

- Addition of the Hubbard term leads to the following effect: 

- if the state is initially less than half occupied, the Hubbard 

potential is positive and tend to repulse electrons. On the other 

hand, if the occupation is more than half filled, the potential is 

attractive and encourage electrons to localized on this 

particular site 

Exchange-Correlation Functionals – X 
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Exchange-Correlation Functionals – XI 
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Relative error in percent in the 

calculated lattice constants with 

respect to their experimental 

values 

Citation: Phys. Rev. B 79, 085104 (2009); 

doi: 10.1103/PhysRevB.79.085104 

Haas et al. 

“Calculation of the lattice constant of 

solids with semilocal functionals” 
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Exchange-Correlation Functionals – XII 
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All functionals are approximations:  

- Reports of ‘Failures of DFT’ is actually a report of a failure 

of the XC functional; 

No functional (so far) is accurate(?) for all properties of 

interest: 

- No matter what functional is ‘invented’ someone will always 

find a case where it fails 

Any functional can be applied to any electronic structure 

problem: 

- In this sense it is ab initio but we use experience and 

intuition to decide which one to use 
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These are quasi-

particles, or Kohn-

Sham eigenstates 

Kohn-Sham Equations: 

   
      rrrnV
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






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     
i

ii

DFT rrrn



*

What do We Solve? 

The universal functional for the energy can be defined in 

terms of electron density: 

- the global minimum value being the exact ground state 

energy of the system, and 

- with density being the exact ground state density. 

Search for this minimum gives the Kohn-Sham equations: 

Assuming that exchange-

correlation functional is 

known (better say: set)!!! 
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Solving Kohn-Sham equations – I 
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iiiKSH  


  rnHKS

Assume intial 

guess for  
   Update effective 

Hamiltonian 

Solve Kohn-

Sham equation 

 rn


Update density 

   



N

i

i rrn
1




Self-

consistent? 

Calculate output: 

energy, forces, 

stresses, charge 

density, band-

structure, etc. 

No 

Yes 
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Solving Kohn-Sham equations – II 
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iiiKSH  


Solve Kohn-

Sham equation     
n

nn

k

kkk rcr




Linear combination of some “basis functions”: 

CSCH E

This coverts a problem into a set of linear 

equations which in matrix representation is 

called “generalized eigenvalue problem”: 

Hamilton and overlap matrices H S

E
C

eigenvalues 

eigenvectors 

Special mathematical 

methods and tricks 

are used to make 

these calculations as 

fast as possible. 
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Three Basis Methods to Solve – II  

32 

Kohn-Sham (Schrödinger-like) equation:  

iiiKSH  


Plane waves: 

Programs: Quantum Espresso sometimes also called PWSCF (GPL), 

Abinit (GPL), VASP (Commercial), … 

  
q

qii rqic



exp,

Pros: Perfect for periodic systems, simple to implement and to work 

with, complete basis set, Plane waves do not depend on the atomic 

positions 

Cons: the number of plane waves needed is quite large, empty 

space is included in the calculation 
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Kohn-Sham (Schrödinger-like) equation:  

iiiKSH  


Plane waves: 

Pseudopotential approximation: 

- Plane waves form a “complete” basis set,  

- However, the number of plane waves, if all 

electrons are taken into account, would be 

very large 

- Core‐electron wave functions are localized, 

however, 

- Valence‐electron wave function are far from 

free‐electron like near atomic cores and show 

oscillation behaviour due to the requirement 

to be orthogonal to core‐electron wave 

functions 

r rcore 

V 

Vpseudo 

χpseudo 

χ 

Three Basis Methods to Solve – III  
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Kohn-Sham (Schrödinger-like) equation:  

iiiKSH  


Plane waves: 

Pseudopotential approximation: 

- To make plane wave basis set feasible, the 

exact pseudopotential is substituted by a much 

weaker (and physically dubious) 

pseudopotential allowing not to consider core 

electrons and, therefore, removing these 

oscillations 

- This approximation works because only 

valence electrons participate in chemical 

bonding and core electrons are almost 

unaffected, and also 

- The detail of valence wave functions near the 

atomic nuclei is unimportant 

r rcore 

V 

Vpseudo 

χpseudo 

χ 

Three Basis Methods to Solve – IV  
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Kohn-Sham (Schrödinger-like) equation:  

iiiKSH  


Plane waves: 

- Wave functions are represented as sum of plane waves, with summation 

over reciprocal lattice vectors 

- Infinite number of plane waves is required theoretically, however, 

practically, the number of plane waves is truncated by the cut-off kinetic 

energy Ecut 

 

 

 

- The quality of the plane wave basis set and, therefore, the results depend 

on Ecut 

     
G

Gkn
rGkicr





exp

,


cutEGk 
2

Three Basis Methods to Solve – V  
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Kohn-Sham (Schrödinger-like) equation:  

iiiKSH  


Localized atomic(-like) orbitals: 

Programs: Gaussian (Commercial), Turbomole (Commercial),  

                  SIESTA (Academic)… 

 
a

aa  rci



Pros: appeal of atomic orbitals, speed of calculation (for Gaussian 

functions analytical calculations of integrals is performed), small 

basis sets, vacuum almost does not matter 

Cons: Non-orthogonal, depend on atomic position 

Three Basis Methods to Solve – VI  



/71 37 

Kohn-Sham (Schrödinger-like) equation:  

iiiKSH  


Localized atomic(-like) orbitals: 

       rrrr lmnlnlm
ˆ a



Radial part Spherical harmonics 

etc … 

nlm

321 
210 

100 

values: 

Three Basis Methods to Solve – VII  
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Kohn-Sham (Schrödinger-like) equation:  

iiiKSH  


Augmented plane wave (best of both worlds): 

Programs: WIEN2k (Commercial), EXCITING (GPL), … 

Cons: Require matching inside and outside functions 

Plane waves in 

empty space 

Spherical 

harmonics in 

intra-atomic 

spheres 

Three Basis Methods to Solve – VIII 
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Augmented plane waves – I  

39 

PW: rKkie


).( 

Augmented plane waves 

- ul(r,ε) are the numerical solutions of the radial Schrödinger 

equation in a given spherical potential for a particular energy ε 

- Alm
K coefficients need to be found to match the PW 

- However, these basis functions are energy dependent (which we 

need to find) 

- This leads to a non-linear eigenvalue problem  

- Numerical search for these energies is possible, however, it is 

computationally very demanding. 

    
m

m

K

m rYEruA



ˆ,

Suggested by J.C.Slater, 1937  
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       
m

ml

k

ml

k

m rYEruBEruA nn




 ˆ,,

Problem is linearized 

Linearized Augmented plane waves 

APW LAPW 

Augmented plane waves 

    
m

m

K

m rYEruA



ˆ,

Augmented plane waves – II  

ul(RMT,Etop)=0 

antibonding state, i.e. 

Top of the band 

d(ul(r,E))/dr=0 at Ebottom and RMT 

bonding state, i.e. 

Bottom of the band 

Suggested by O.K.Andersen, 1975  
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Example: Titanium 

Valences states: 

- High in energy 

- Must use delocalized 

wavefunctions 

 

Semi-core states: 

- Medium energy 

- Not completely confined inside the 

specified sphere, i.e. charge 

leakage 

 

Core states: 

- Very low in energy 

- Fully confide inside the specified 

sphere 

Augmented plane waves – III  
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Summary of LAPW method 

 
  

      





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
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SrrYEruBEruA

IrrKki
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m
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Kk

m

k

K






















ˆ,,

exp

,1

,

,1

,

These basis functions are used 

to describe valence states. 

 
        










a
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a

a
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LO

m

LO
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LO
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LO 
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


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0

,2

,

,1

,

,1
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Additional basis functions are added for low-lying 

valence states which are called semi-core states. 

Augmented plane waves – IV  

Suggested by D.J.Singh, 1991 
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Summary of APW-lo method 

 
        










a
aaaaaaaaa

a

a
SrrYEruCEruBEruA

Sr
r

m

LO

m

LO

m

LO

m

lm

LO 






ˆ,,,

0

,2

,

,1

,

,1

,,

 
  

   













 

a
aaa

SrrYEruA

IrrKki
r

m

m

Kk

m

k

K
















ˆ,

exp

,1

,

 
      










a
aaaaaa

a

a
SrrYEruBEruA

Sr
r

m

lo

m

lo

m

lm

lo 






ˆ,,

0

,1

,

,1

,,

Additional basis functions are added for low-lying 

valence states which are called semi-core states. 

These basis functions are used 

to describe valence states. 

Augmented plane waves – V  

Suggested by E.Sjostedt, 

L.Nordstrom, D.J.Singh, 2000 
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FP-(L)APW-lo method 

For basis functions one can use: 

- LAPW (plus LO), 

- APW-lo (plus LO),  

- or mixed 

For potential one can use: 

- Muffin-tin approximation, or 

- FP, i.e. Full Potential 

 
   

 
















IrrKiV

SrrYrV

rV

K

K

LM

LMLM







.exp

ˆ
a

Augmented plane waves – VI  

Practically, the numbers which control 

the accuracy of the solution are: 

- The cut-off for the plane waves:  

- The cut-off for the angular functions 

maxRK

maxL
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Solving Kohn-Sham equations 

45 

iiiKSH  


  rnHKS

Assume intial 

guess for  
   Update effective 

Hamiltonian 

Solve Kohn-

Sham equation 

 rn


Update density 

   



N

i

i rrn
1




Self-

consistent? 

Calculate output: 

energy, forces, 

stresses, charge 

density, band-

structure, etc. 

No 

Yes 
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Some practical aspects of calculations – I 

47 

One scheme to use: 

- Many quantities require integration over BZ 

- Computationally, the integrals are approximated by summation 

- Point group symmetry is utilized fully 

- Monkhorst-Pack grid NxNxN scheme constructs equally spaced 

points 

- Good for SCF 

 

 

 

Another scheme to use: 

- Linear tetrahedron method  

- Which divides BZ into tetrahedral 

- Interpolation is performed 

- Good for DOS 

Brillouin zone integration (K-points) 

   2

,
n j

jnj rkwrn



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Some practical aspects of calculations – II 

48 

Typical QE input file: 

type of calculations and  

where to find and store files 

variables that specify the system 

under study 

variables that control the algorithms 

used to reach the self-consistent 

solution of KS equations for the 

electrons 

name, mass and pseudopotential 

used for each atomic species 

present in the system 

type and coordinates of each atom 

in the unit cell 

coordinates and weights of the k-

points used for BZ integration 
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To run calculations: 

prompt > espresso_dir/bin/pw.x < si.scf.in > si.scf.out 

...... 

 End of self-consistent calculation 

...... 

!    total energy              =     -15.84452726 Ry 

...... 

convergence has been achieved in   6 iterations 

...... 

Output (from file si.scf.out) 

Is it all?  

Unfortunately, no, even for scf calculations!!! 

Some practical aspects of calculations – III 
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As the solution is numerical, the 
convergence has to be checked for: 

- Ecut - number of k points 

Keep in mind that the higher the parameters are set, 

the (much!) longer it takes to compute 

Some practical aspects of calculations – IV 
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Strictly speaking the correct values are: 

 - electron density n(r), and  

 - total energy Etot 

Total energy is a very useful quantity as it can be used to get 

structures, heats of formation, adsorption energies, diffusion barriers, 

activation energies, elastic moduli, vibrational frequencies,… 

Ag bulk – Etot vs. a Is NiO magnetic? NM, FM, AFM? 

Solve three different problems: 

 - nonmagnetic, 

 - ferromagnetic, and 

 - antiferromagnetic  

Compare Etot for all three cases 

The lowest Etot is for AFM 

Some practical aspects of calculations – V 
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Supercell approach for modelling non-periodic systems 

Figure taken from “DFT: Basic idea and 
Practical calculations” lecture by                

Dr. A. Phusittrakool (2007) 

If the system is non‐periodic, periodicity 

must be included via constructing 

‘supercell’: 
 

For molecule or cluster, add empty 

space from all sides. 
 

For surface, add empty space from a 

required side and add more material 

from the opposite side.  
 

For defect, add more material from all 

sides. 
 

All that is needed to reduce the 

interaction between repeated images 

as much as possible! 

Some practical aspects of calculations – VI 
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Supercell approach for modelling non-periodic systems 

Figure taken from “DFT: Basic idea and 
Practical calculations” lecture by                

Dr. A. Phusittrakool (2007) 

If one doubles the unit cell in one 

direction, it is enough to take only half 

of the k points in the corresponding 

direction in the reciprocal space 

 

One has to be careful when comparing 

energies in cells with different size 

unless either equivalent sampling of k-

points is used or one is converged in 

the total energy in both cases 

Some practical aspects of calculations – VII 
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Figures taken from “XSpectra: A tool for X-
ray absorption spectra (XAS) calculations” 
lecture by Dr. M. Calandra (2009) and M. 
Taillefumier et al. PRB 66 (2002) 195107. 

54 

Defects (e.g. core-hole) handling 

Calculated C K-edge x-ray absorption 

spectra in diamond (with core-hole) for 

different supercell sizes, compared with 

experimental data 

Some practical aspects of calculations – VIII 
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Examples of applications of DFT 
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Elemental Crystal Structure (using GGA) 

Figure taken from “LDA and the other 
approaches: Successes and Failures” lecture 
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Examples of applications of DFT 
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Charge and spin density for zb-CaAs: 

Figure taken from “Theory of magnetic 
properties based on atomic p-orbitals in 
perfect and defected solids” PhD thesis  

by Dr. O. Volnianska (2009) 
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Ionic relaxation, i.e. structure optimization 

The positions of atoms in the unit cell are not known 

(e.g. for surface relaxation).  

Assume intial 

positions of atoms 

Perform SCF 

calculation until it 

is fully converged 

Calculate 

forces Forces=0? The structure 

is optimized! 

No 

Yes 

Move ions 

Examples of applications of DFT 
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Examples of applications of DFT 
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Nudged Elastic Band (NEB) method 
will find a minimum energy pathway connecting two local minima and, therefore, 

can be used to calculate reaction pathways and energy barriers. 

An example: diffusion of a single vacancy in 16-atom cell of Be 

Starting structure with 
vacancy in (0,0,0) 

Ending structure with 
vacancy in (1/6,1/3,1/4) 

Figures taken from “Simulations of kinetic events 
at the atomic scale” lecture by Dr. G. Henkelman 
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Examples of applications of DFT 
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Nudged Elastic Band (NEB) method 
will find a minimum energy pathway connecting two local minima and, therefore, 

can be used to calculate reaction pathways and energy barriers. 

Figures taken from “Simulations of kinetic events 
at the atomic scale” lecture by Dr. G. Henkelman 

After ΔE is found 

(from DFT), it can 

be used in kinetic 

Monte Carlo method 

(~10k of atoms) 

to study complex 

events as a function 

of time and 

temperature. 
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Examples of applications of DFT 
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Electronic Structure of FeO 

Figures taken from “LDA and the other 
approaches: Successes and Failures” lecture 
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Examples of applications of DFT 
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CrO2 half-metallic ferromagnet 

spin-up spin-down 

gap metallic 
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Examples of applications of DFT 
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Calculation of cohesive energy: 

atomatomcrystalcohes

BABA yExEEE
yx



crystalE

atom

AE

atom

BE

SCF calculations of atoms should be: 

- performed in a supercell with one atom in a ~30 bohr FCC box  

- The same RMT, RKmax as for crystal 

- 1 k-point 

SCF energy of crystal calculations 

SCF energy of calculations of atom A 

SCF energy of calculations of atom B 

Calculation is pretty much similar in case of defect formation 

energy, however, one need to calculate chemical potential as 

well of an element, i.e. extra calculations are required. 
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Supercell approach for modelling non-periodic systems 

Bonding charge density of an 
O atom on the Al (001) 

surface calculated by QE and 
visualized by XCrysDen 

Figures taken from “Hands-on tutorial on the 
Quantum Espresso package” lecture (2008) 

Simulation of the STM image of 
the AlAs (110) surface by QE and 

visualized by XCrysDen 

Figures taken from “Hands-on tutorial on the 
Quantum Espresso package” lecture (2008) 

Examples of applications of DFT 
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Core level spectroscopy – XPS 

Estimation of core-level shift: 
- i.e. estimation of ionization potential of core e- 

- Core-eigenvalues calculated during SCF are NOT a good 

approximation: 

- Fastest (qualitative agreement) but expect errors ~10-50 eV 

- Slater’s “transition state” with half occupancy: 

- Fast (better agreement) but expect errors ~1-3 eV  

- Δ-SCF-calculation with and without core-hole: Etot(N) – Etot(N-1): 

- Slow (good agreement) because supercell must be used, and 

- Two calculations has to be performed 
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Core level spectroscopy – XAS, EELS 

WIEN2k has an option to calculate interaction of solid with: 

- Light (XAS, more specifically XANES), or  

- Electrons (EELS, more specifically ELNES) 

- Core electrons are excited into a 

conduction band 

- Transition is described by Fermi’s 

“golden rule” between initial (core) and 

final (conduction-band) state and the e- 

or photon 

- XAS is calculated via XSPEC or OPTIC 

- EELS is calculated via TELNES3 
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Core level spectroscopy – XAS, EELS 

- No core hole, i.e. ground state (or sudden approximation) 

- Usually not a good approximation (maybe in metals?)  

- Z+1 approximation also not good (e.g. replacing C by N) 

- In absorption spectroscopy, core-hole has a large effect on 

the spectrum 

- Remove 1 core e- on ONE atom in the supercell,  

add 1 e- to conduction band 

- Remove 1 core e- on ONE atom in the supercell,  

add 1 e- as uniform background charge 

- Fractional core hole is possible 

(make sure that supercell is used) 
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Core level spectroscopy – XAS, EELS 

- DFT is a ground state theory! 

- It should fail for the prediction of excited state properties 

- However, for many systems it works pretty well 

- Sometimes, adding a LO improves description of high-

energy states 

WARNING (or Reminder): 
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Conclusion 

Density Functional Theory (DFT) is an excellent 

computational tool widely used in physics, chemistry and 

materials science 

DFT is an exact many-body theory in principle, but we do 

not have a practical exact functional 

Accurate for many simple and complicated systems, but …  

… Keep in mind limitations 

Many codes available (GPL, Academic, Commercial), 

tutorials, workshops, schools:  

     “WIEN2k and Spectroscopy: Hands-on Workshop” 

        was held on September 29 – October 2, 2014 

         at Institute of Physics PAS, Warsaw, Poland. 
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