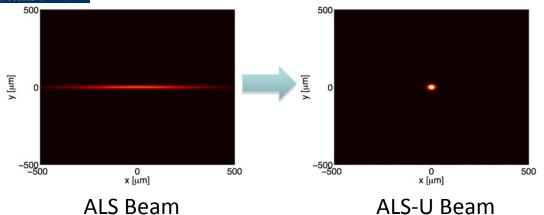
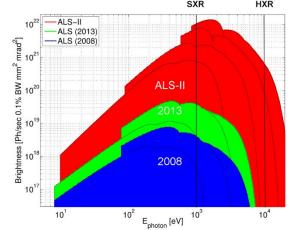


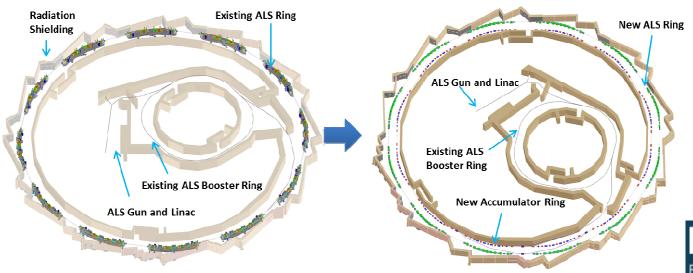
Power Supplies for ALS-U

POCPA 2016 Barcelona, Spain

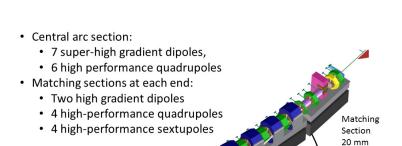
Chris Pappas





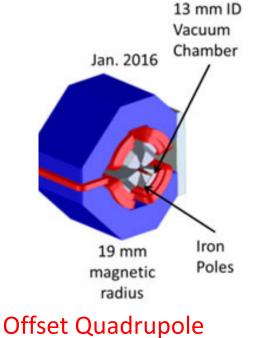

ALS-U Motivation & Concept

ALS has good vertical emittance but the horizontal emittance (ε_x =2000 pm) is limited by magnet dispersion. By using more, smaller angle bend magnets, and refocusing after each bend, the emittance for ALS-U can be reduced to 50 pm, and the brightness increases by a factor of > 100.



Christoph Steier, et al.,
Proposal for a Soft X-Ray Diffraction
Limited Upgrade of the ALS, IPAC14.

ALS-U Magnets

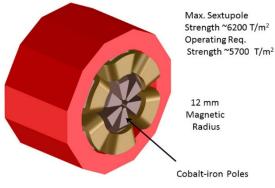


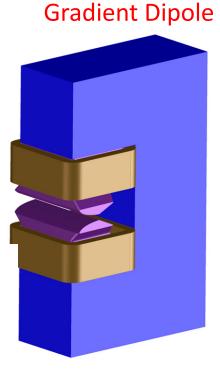
Central ARC Section

13 mm vertical aperture

Coil Winding

Pole Protrusion

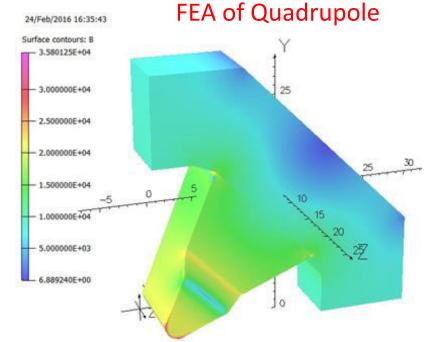



Quadrupole

V17 Lattice ALS-U arc

Matching

Quaurupoi



vertical

aperature

Sextupole

Charles Allen Swenson, et al., Conceptual Design of Storage Ring Magnets for a Diffraction Limited Light Source Upgrade of ALS, ALS-U, IPAC16.

Power Supply Requirements ALS-U Power Supply Requirements

		Total current				
Magnet	Material	(Amp-turns)	# of coil turns	Current (A)	Energy (J)	Inductance (H)
Quad bend	pure iron pole and yoke	7420	34	218.2	1282.1	5.4E-02
Gradient dipole	pure iron pole and yoke	11465	64	179.1	843.2	5.3E-02
Quadrupole (L=90mm)	Vacoflux 50 pole, 1010 steel yoke	3300	22	150.0	59.6	5.3E-03
Quadrupole (L=180mm)	pure iron pole and yoke	4400	22	200.0	182.5	9.1E-03
Quadrupole (L=190mm)	pure iron pole and yoke	4200	22	190.9	177.2	9.7E-03
Quadrupole (L=190mm)	Vacoflux 50 pole, 1010 steel yoke	5100	22	231.8	262.9	9.8E-03
Quadrupole (L=305mm)	pure iron pole and yoke	4100	22	186.4	267.4	1.5E-02
Sextupole	Vacoflux 50 pole, 1010 steel yoke	2630	14	187.9	188.5	1.1E-02
H Sextupole						
Quad bend, no quad coil, dipole	pure iron pole and					
coil only Totals	yoke	970	228		4.8	3.7E-04

Requirements Continued

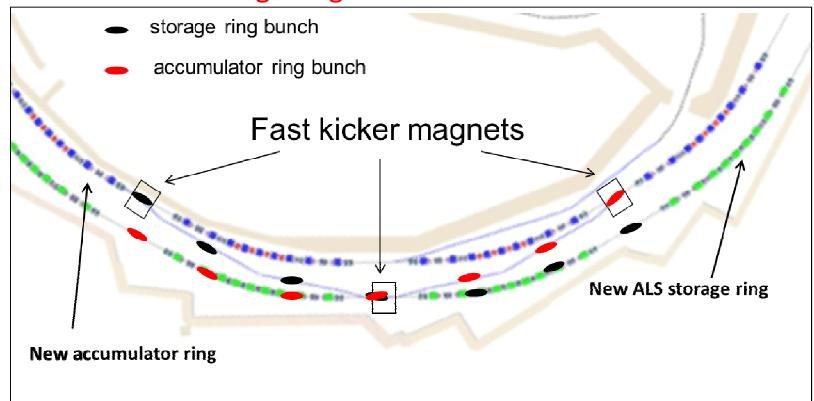
			Magnet	Magnet	Winding	Time	Power Supply
Magnet	Power (kW)	Voltage (V)	Current	Voltage	Resistance	constant	Bandwidth
Quad bend	4.8	22.0	218.2	22.0	1.0E-01	5.3E-01	DC + 5 A/s
Gradient dipole	2.6	14.5	179.1	14.5	8.1E-02	6.5E-01	DC + 5 A/s
Quadrupole (L=90mm)	0.5	3.2	150.0	3.2	2.1E-02	2.5E-01	DC + 5 A/s
Quadrupole (L=180mm)	1.2						DC + 5 A/s
Quadrupole (L=190mm)	1.1	6.0	190.9	6.0	3.1E-02	3.1E-01	DC + 5 A/s
Quadrupole (L=190mm)	1.7						DC + 5 A/s
Quadrupole (L=305mm)	1.5	7.9	186.4				DC + 5 A/s
Sextupole	1.2		187.9	6.4	3.4E-02	3.1E-01	DC + 5 A/s
H Sextupole							kHz range
Quad bend, no quad coil,							
dipole coil only	0.1	0.7	161.7	0.7	4.4E-03	8.4E-02	DC + 5 A/s

Requirements Continued

Magnet	Number of Trim Circuits	# of Magnets	# of Supplies	Chamber Bandwidth	Ripple @ Frequency	Stability 8 Hrs	MTBF , 500 hr for power supply failures	Polarity
quad bend	1	84	84	3 kHz	10 ppm	10 ppm	4.44E+05	Unipolar
gradient dipole	0	24	24	3 kHz	10 ppm	10 ppm	4.44E+05	Unipolar
quadrupole (L=90mm)	TBD	24	24	3 kHz	10 ppm	10 ppm	4.44E+05	Unipolar
quadrupole (L=180mm)	TBD	24	24	3 kHz	10 ppm	10 ppm	4.44E+05	Unipolar
quadrupole (L=190mm)	TBD	24	24	3 kHz	10 ppm	10 ppm	4.44E+05	Unipolar
quadrupole (L=190mm)	TBD	24	24	3 kHz	10 ppm	10 ppm	4.44E+05	Unipolar
quadrupole (L=305mm)	2	72	216	3 kHz	10 ppm	10 ppm		Unipolar with bipolar trims
sextupole	3	48	192	TBD	100 ppm	100 ppm	4.44E+05	Unipolar
H Sextupole	3	48	192				4.44E+05	
quad bend, no quad coil, dipole coil only	Trim coil for line 3	84	84		3 ppm	20 ppm	4.44E+05	Bipolar
Totals			888					

Power Supply Options

- ALS Physics Group would like to power each magnet with a dedicated supply.
- I question if this is the best option; reliability, cable installation could be compromised....
- One option would be to use redundant, high bandwidth power supplies for critical magnets, that could switch from a partial load to full load quickly.
- Would transients be tolerable?
- What about cost, and an even more complicated cable plan?
- Hoping for expert feedback on options.

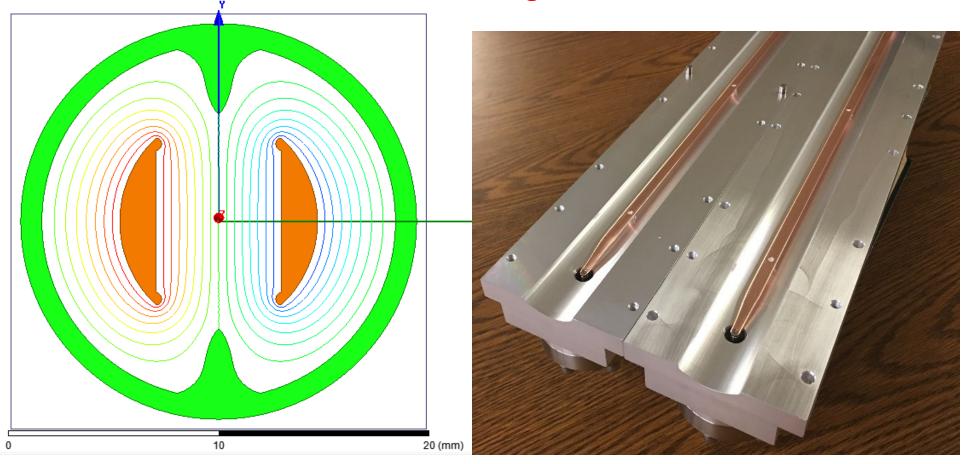


ALS-U Swap-Out Injection

Beam lifetime in ALS-U is limited due to inter-bunch scattering. One solution is to use an accumulator ring at the same energy as the ALS-U with less scattering, and swap bunches between the accumulator and storage rings.

Kicker Requirements

Parameter	Value
Beam Energy	2 GeV
Bend Angle	3.5 mrad
Magnetic Length	2 m
Aperture	10×6 mm (H×V)
B Field	5.83 mT
E Field	1.75 MV/m
Rise/Fall Time	<10 ns
Pulse Width	50 ns
PRF	1 Hz
Inter/Intra Pulse Ripple	<10/1 % FS



Kicker Magnet Design

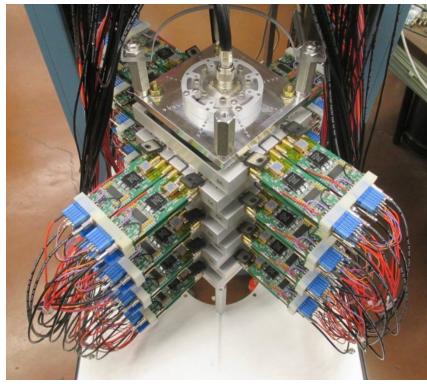
Magnet is a tapered stripline designed for 50 Ω even mode (2D field simulation shown of left).

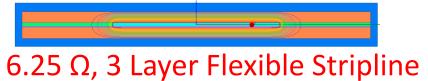
A magnet has also been designed to install in the ALS. This will be used to validate our design, and could be used as a vertical pinger. A non-vacuum "cold model" is shown on the right.

Modulator Requirements

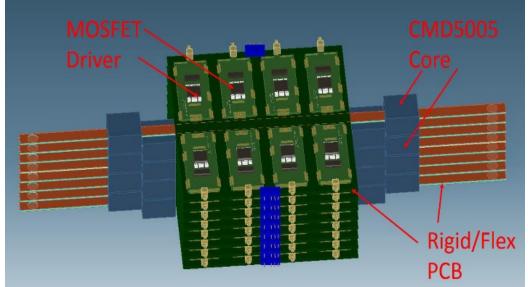
Parameter	Value
System Impedance	50 Ω
Magnet Current	± 106 A
Magnet Voltage	± 5300 V
# of Adder Cells	8
# of MOSFETs/ Cell	8

We are investigating three options for the power modulators – a commercial unit from FID Technologies, a conventional inductive adder topology, and a transmission line adder, both adders designed and built at LBNL.

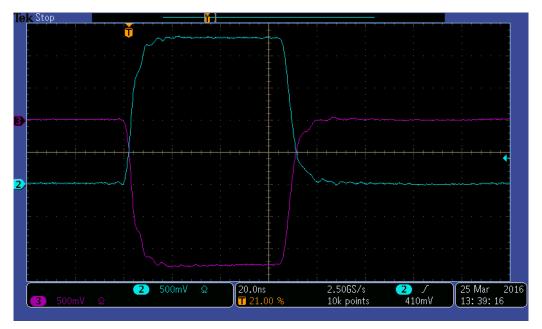




Power Modulators

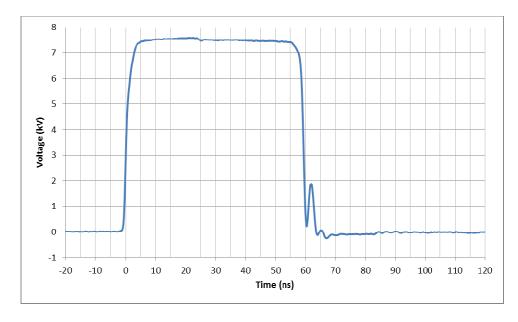

8 Cell Inductive Adder

FID Pulser



BERKELEY LAB
Bringing Science Solutions to the World

Modulator Testing



Bi-polar output from inductive adder 1000 V/div into 50 Ω .

Unipolar FID output into 50 Ω .

Conclusion

- Discussion of power supplies is just beginning.
- Physics group would like control over every magnet. How to manage availability with such a large number of supplies that could abort beam?
- Plan to test commercial high bandwidth supplies for transients when switching from partial load to full load (redundant supplies). What is the added cost of this plan?
- Swap out kicker work is progressing and we hope to install a prototype system in ALS in Jan. 2017.

