

# Breaking news from SOLEIL + Some reflections on the main topic

### F. BOUVET

5th POCPA Workshop, 24-26 May 2016, ALBA



# SYNCHROTRON SOLEIL: A SCIENCE PLATFORM

Beamline operation: Fast growing nb. of light sources

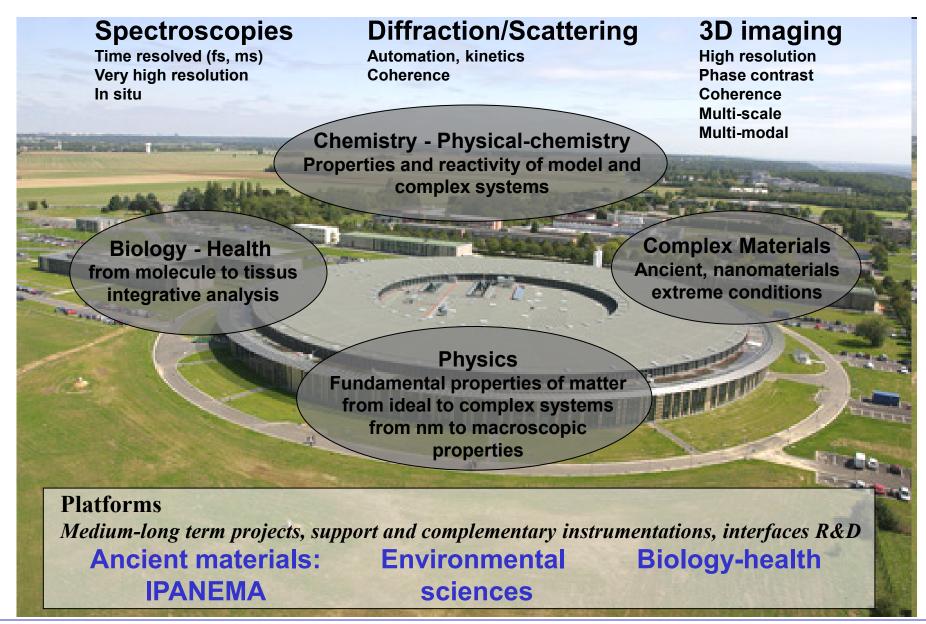
2008: 11 BL

2009: 14 BL

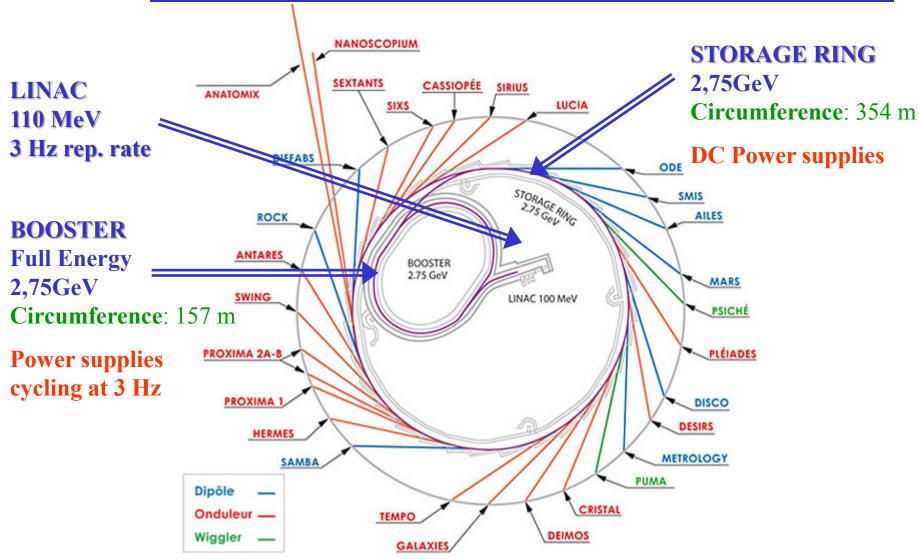
2010: 17 BL

2011: 20 BL

2013: 25 BL


2014: 27 BL

2016: 29 BL

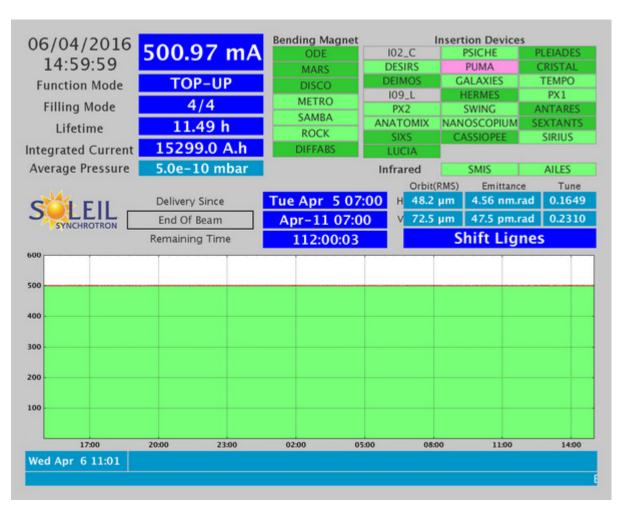











- ☐ About 600 magnet power supplies installed
- ☐ Linac and Booster designed for Top-up operation



Routinely operation
@ 500mA (max.
current for which the
machine has been
designed) since
December 2015

Intensity constant within 1% (Top-Up)



Machine status



## **Some statistics**

#### In 2015:

☐ User beam availability: 98,9% (= 4904 hours of beam delivered to users)

■ MTBF: 105,3 hours

■ MTTR: 1h10





## Some statistics

#### In 2015:

- **Major incident in May:** 3 weeks of beam interruption due to a fire outbreak in a reactive power compensator system
- Consequence: Beam schedule changed → Shorter machine shuntdowns (nearly no maintenance possible during the 2<sup>nd</sup> semester)
- ☐ Good reliability & availability on the power supplies



6 incidents in 2015

~ 7 hours of dead time

But 4 hours wasted following a failure of the main dipole PS:

- Normal procedure: switch the load on the spare dipole PS
- Pb: The colleague on-call didn't realize there is a neutral position on the changeover switch...
- Failure occured at the end of his night shift → Tough!
- Written procedure should have been more detailed...

POCPA5



## Some statistics

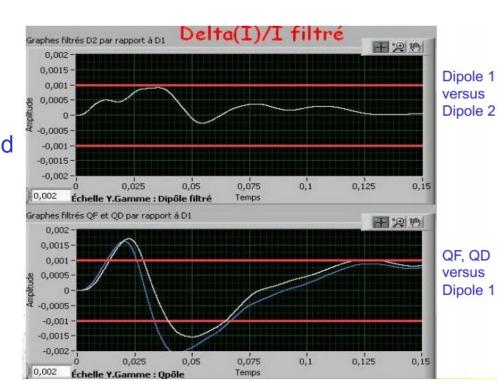
- In 2016 until May:
  - ☐ User beam availability: 99,7%
  - Not a single incident on the power supplies





## Focus on 2 events

#### 1/ Booster PS:


> May 2015: Slow drift of the beam position in the transfer line between Booster and Storage Ring  $\Rightarrow$  Need to change the current offsets / amplitudes of the Booster 3Hz PS from time to time

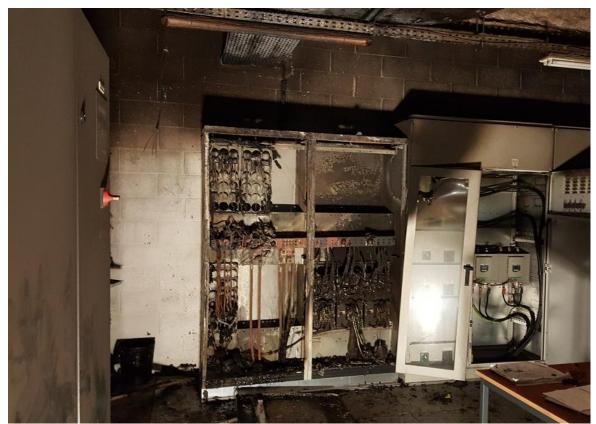
October: Situation gets worse (Need to tune the beam injection inside the Storage Ring every 2 or 3 days)

⇒ A dedicated machine shift is scheduled Result: There is a drift of the current fed by 1 of our 2 Dipole Booster PS:

#### Pb due to the PSI ADC/DAC card

Bad luck → Not detected in our « tracking tool » used to monitor the tracking between the 3Hz PS currents:




It was out of order since March (and unfortunately no time to repair it because of the shortening of the machine shutdowns decided after the fire outbreak)



## Focus on 2 events

#### 2/ Fire outbreak:

May 2015: 3 weeks of beam interruption due to a fire outbreak in a reactive power compensation cabinet

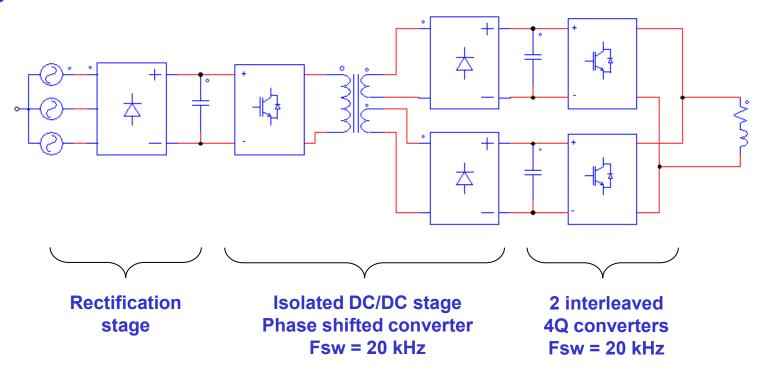


At SOLEIL, we have this kind of system installed on the main LV switchboards

⇒ Occured on a 540 kVAR capacitor bank connected to the switchboard supplying the cooling tower systems



## **New developments**

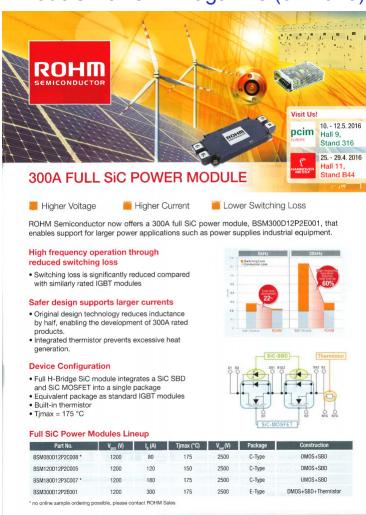

#### Spare power supply for electromagnetic undulators:

Can be used on different kind of loads when a failure occurs on one of the corresponding power supplies (all from DANFYSIK...)

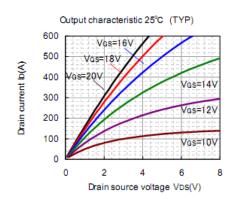
± 600A / ± 150V ; ± 440A / ± 150V ; ± 360A / ± 250V

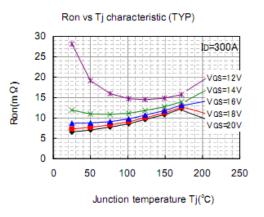
Accuracy class: 50ppm

#### **Topology:**

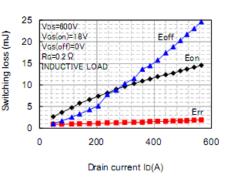


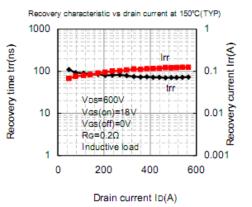




## **New developments**


#### Spare power supply for electromagnetic undulators:

#### « Bodo's Power » magazine (04/2016)





#### BSM300D12P2E001





Switching loss vs drain current at 150 °C (TYP)





Technology for you

Light it Po

Power it!

www.rohm.com/eu



## **New developments**

#### Spare power supply for electromagnetic undulators:

# Comparison standard module IGBT+Diode Si vs. module MOSFET+Diode SiC

| Module Si FF300R12KT4 INFINEON  |        |         |        |              |       |       |  |  |
|---------------------------------|--------|---------|--------|--------------|-------|-------|--|--|
| Pcond T                         | Pcom T | Pcond D | Pcom D | P tot module | Tj T  | Tj D  |  |  |
| 165 W                           | 335 W  | 65 W    | 240 W  | 805 W        | 128°C | 126°C |  |  |
|                                 |        |         |        |              |       |       |  |  |
| Module SiC BSM300D12P2E001 ROHM |        |         |        |              |       |       |  |  |
| Pcond T                         | Pcom T | Pcond D | Pcom D | P tot module | Tj T  | Tj D  |  |  |
| 240 W                           | 140 W  | 80 W    | 30 W   | 490 W        | 107°C | 89°C  |  |  |

40% reduction in power losses @ 20kHz

Use of Concept drivers with voltage level shifter  $\Rightarrow$  V<sub>GS</sub> = +20V / -5V





Performance specification, reviewing and testing



#### **SOLEIL** construction phase:

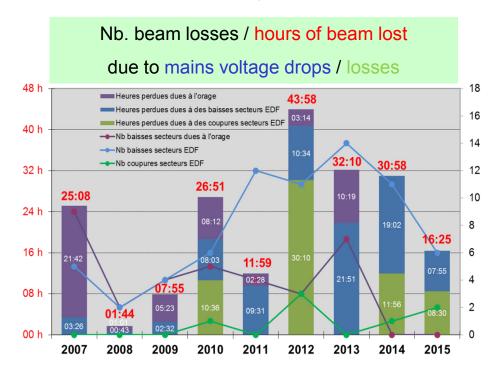
- PS specifications not detailed enough, especially in terms of EMC (only a list of standards to comply with...)
- Reviewing: Sizing of main power components (semiconductors, capacitors, etc...) not checked
- Testing: Mainly measurements of output characteristics (current precision + voltage ripple in DM), no thermal / EMC measurements...

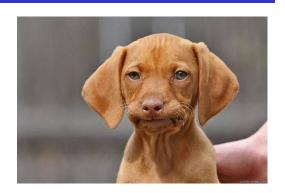
#### ⇒ Serious troubleshooting during first years of operation



#### A positive point nonetheless:

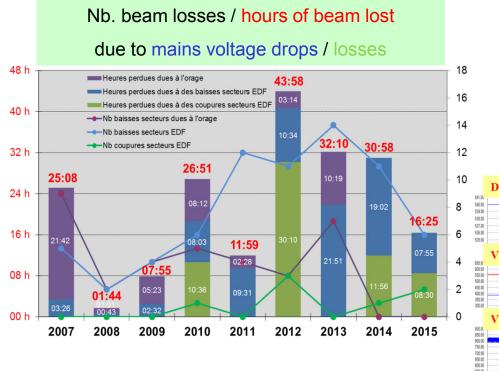
Documentation complete (Schematics, BOM, manuals, Gerber files, <u>firmware</u> sources except those from DANFYSIK...)

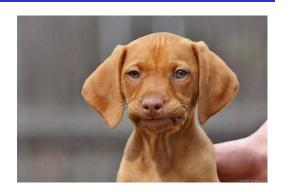


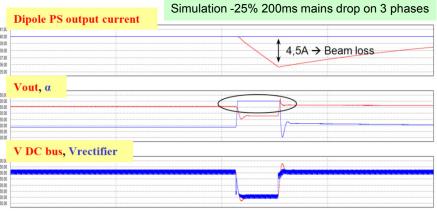


#### Non exhaustive list of items that should be detailed in a technical specification:

- Power converter ratings
- Load characteristics, magnet cycles, di/dt limits
- Static performance (current precision, ripples)
- Dynamic performance (reference tracking, overshoots, AC line disturbance rejection)
- Synchronisation between PS if required
- Control system
- Internal / external interlocks
- Magnet earthing
- Environment (Electricity, cooling)
- Efficiency, power factor, THD
- Layout, weight / volume
- Contract execution, schedule, progress report, acceptance tests
- Documentation
- Spare parts
- EMC (immunity / emissions)
- Acoustic noise
- Design rules (semiconductors, capacitors, fans...)
- Reparability




#### - AC line disturbance rejection



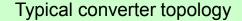



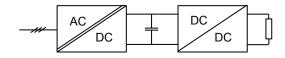



#### AC line disturbance rejection





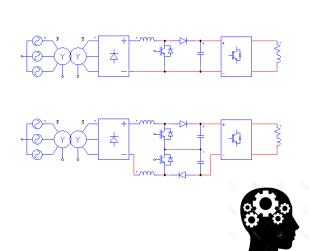


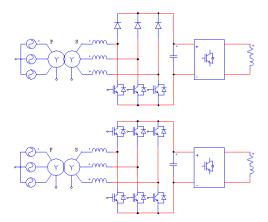


#### Most events: Voltage dips < 25% on 1 to 3 phases with a duration < 150ms

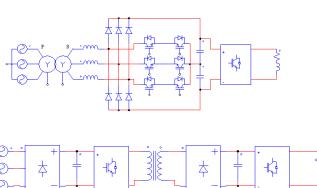
| Storage Ring power supplies                                                              | Dipole PS | Spare Dipole | Spole PS | Spole PS  | Qpole PS | Qpole PS |
|------------------------------------------------------------------------------------------|-----------|--------------|----------|-----------|----------|----------|
|                                                                                          | 610V/580A | PS 610V/580A | 75V/350A | 140V/350A | 14V/250A | 22V/250A |
| % of DC link voltage drop causing saturation of regulation (for usual current setpoints) | 12%       | 25%          | 55%      | 30%       | 45%      | 40%      |

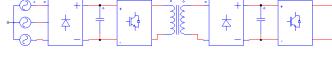


AC line disturbance rejection



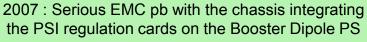





#### Possible solutions:

- Diode rectification stage delivering high enough DC link voltage to avoid saturation of output stage converter during mains voltage sags
- Controlled AC/DC input stage to regulate DC link voltage at the desired value Galvanic isolation: Possibility to introduce a high frequency transformer (weight/volume ) PFC circuits can be implemented

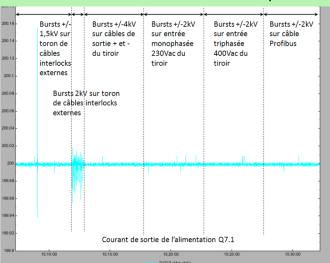












- AC line disturbance rejection
- EMC (immunity / emissions)







#### Poor EMC on the SR Quadrupole PS



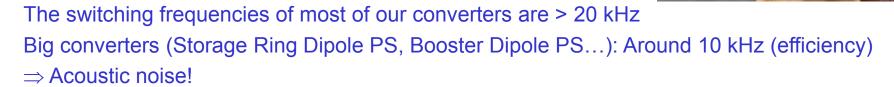


DSP crash in master/slave configuration:

Use of unshielded flat ribbon cable for the serial link between PSI master & slave cards (= transmission line)

The good solution: Common backplane card for master and slave cards with controlled trace impedance

Fast transient burst immunity test


⇒ CM filtering of external AON I/O

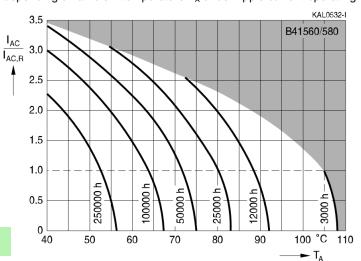






- AC line disturbance rejection
- EMC (immunity / emissions)
- Acoustic noise

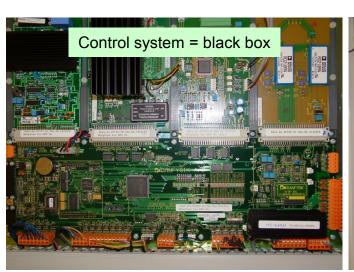



- Design rules (semiconductors, capacitors, fans...)

Ex: Capacitor lifetime > 100 000 hours in all operating conditions

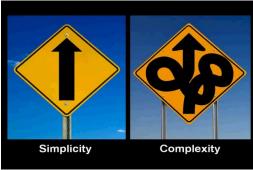


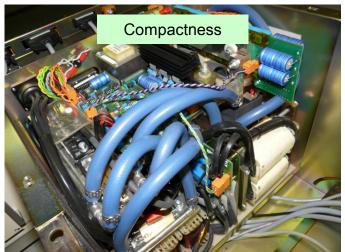
SR Dipole PS: Redesigned DC link capacitor banks  $\Rightarrow$  120 000 hours


## Useful life¹) depending on ambient temperature T<sub>A</sub> under ripple current operating conditions






- AC line disturbance rejection
- EMC (immunity / emissions)
- Acoustic noise
- Design rules (semiconductors, capacitors, fans...)
- Reparability


Unfortunate choice: DANFYSIK power supplies

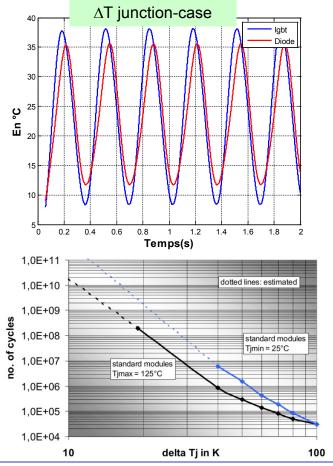


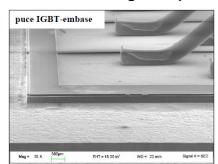


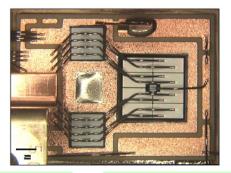










# Reviewing: Draw upon knowledge and experience of PS experts from other accelerator facilities


**Example: Short lifetime of the IGBT modules in our main 3Hz Booster power supplies** 

Cause: Harsh power & thermal cycling conditions

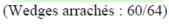
Bonding wire pull test on 3 IGBT modules



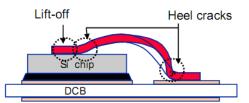




Module 1: New REF


(Wedge arraché: 0/64)

Module 2: 5 Millions cycles


(Wedges arrachés: 43/64)



Module 3: 25 Millions cycles







Many failures between 2006 and 2014



#### Reviewing: Draw upon knowledge and experience of PS experts from other accelerator facilities

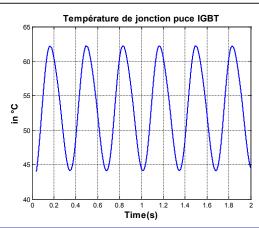
**Example: Short lifetime of the IGBT modules in our main 3Hz Booster power supplies** 

Cause: Harsh power & thermal cycling conditions

New design in 2014 (~ 120 k€ project, spares included)



< IGBT MODULES >


#### CM2500DY-24S

HIGH POWER SWITCHING USE **INSULATED TYPE** 



| Collector current I <sub>C</sub> 2 5 0 0 A           |
|------------------------------------------------------|
| Collector-emitter voltage V <sub>CES</sub> 1 2 0 0 V |
| Maximum junction temperature $T_{jmax}$ 1 7 5 °C     |
| ●Flat base Type                                      |

- Aluminum base plate •RoHS Directive compliance
- Recognized under UL1557, File E323585



**IGBT** cycling capability > 200 Millions (~ 20 years)







## Testing: You need tools (seems obvious and it is)...

























# **Questions**



Thank you for your attention.

Questions?