ALBA-II day

Scientific Computing in 4th gen synchrotrons

Nicolas Soler
Scientific Data Management section (Computing division)
30 June 2021

In a nutshell

More data

reusable

open,

4th gen. synchrotron facility

More brilliance & coherence

kHz fast detectors

Faster data collection for conventional method

Previously marginal techniques will become routine (SSX, Ptychography)

Public research data will be browsable & reusable by others (FAIR)

- Storage capacity
- Bandwidth
- HPC power
- Automation
- Scientific data processing expertise

European Commission, funders

Annual data volume generated

Source : http://status.cells.es/storage/

But this will change soon:

- 2 other new beamlines (NOTOS, MINERVA)
- + 2 material science microscopes.

Data @ 4th generation synchrotrons

Changes

- Annual data volume will increase by an order of magnitude, at least.
- Users won't be able anymore to download, process and analyze their data at their home laboratory.
- Public research data must be FAIR. (Reusable)

Evolution

- Provide our public experiment users with all the necessary tools infrastructure
 to store, browse and process their data in collaboration with other European
 photon & neutron (PaN) sources.
- This will extend our role beyond custody without altering the ownership and restricted access of the data during the embargo (future data policy).

2017 Data policy for public users

To be updated in the near future

Data & metadata accessibility	Kept online for 1 year , then on tape (total: min. 5yrs). Read only. On-line catalogue of metadata. ALBA compromises to best effort to capture as complete as possible metadata.	
Privacy	Restricted to the team for 3yrs , then opened to the public . Access rights transferable. High level metadata public.	
Ownership	Determined by contractual obligation of the person performing the analysis.	
Curation / analysis	Optional but encouraged on site. Results can be stored on-site.	
Loss of data	ALBA non liable.	
Publication	Obligation to cite the experiment and data PIDs and to deposit the reference in ALBA's publication database.	
Commercial users	Confidential data, owned by the client, not stored unless agreed otherwise	

Happening now: Increase of our storage capacities

- XAIRA, FAXTOR and XALOC will be working with kHz data rates.
- MX Typical size 8h shift: ~4-25 GB, (SX: ~30-50TB)
- An ultra-fast storage system is planned to be installed and shared with the FAXTOR tomography beamline (burst-buffer 24h + storage), ideally around 2PB.

Beamline	Data Generation (PB/year)	DataSet Size (MB)	W Performance Base (GB/s)
BL XAIRA	1.26 PB/year	200 MB x 8 files	1,23
BL FAXTOR	2 PB/year	4 MB x 4000 files	11,5

Tabla 1: Previsión de la generación de datos de los detectores para XAIRA y FAXTOR

Scientific Data Management (Feb. 2021)

A new section inside the Computing division

Scientific Data Management (Feb. 2021)

A new section inside the Computing division

Data processing

Programming
Optimization Java HPC
Data C/C++ Analysis
Pipelines Processing Visualization
Scientific Computing
Machine Learning Web scrapping
Matlab Python Libraries
API data reduction

Data reusability

- **4 people** (1 more in the beginning of 2022) to be hired during the summer with hybrid science / computing profiles
- (will work on **all beamlines**, occasional support to new 4th generation synchrotron source)

- Metadata ingestion
- Provenance
- Persistent identifiers
- Catalogue
- DAaaS

https://www.nist.gov/programs-projects/facilitating-adoption-fair-digital-object-framework-material-science

The future is open science

Wilkinson, M., Dumontier, M., Aalbersberg, I. et al. The FAIR

Guiding Principles for scientific data management and

stewardship. Sci Data 3, 160018 (2016)

Mission:

- Make data easily reusable for the scientific community
- Allow users to move and remotely process their data in between European PaN facilities

WP2: data policy and stewardship

WP3: data catalogues

WP4: data analysis as a service

European projects

HPC

formats

(NeXus)

Common data policy framework

(eg iCAT,

SciCat)

Lossy vs non lossy

Meta-compressors (ML)

(WP7)

Towards multimodal experiments

Summary: 4th gen.

- Faster acquisition time and bigger volumes of data generated will require more computational tools for data **sorting**, **processing**, **reduction** and **visualization**.
- Tools will also be developed to integrate data from different sources (multimodal experiments).
- Data reusability will be ensured by proper metadata ingestion at the beamline (as automated as possible) served by a federated data catalogue.
- Users will be able to keep and process their data on-site via a software portal.

Contact : nsoler@cells.es

Thank you!

www.cells.es