Thermal Management and Clamping for the New High-Dynamics DCM for Sirius

M. Saveri Silva*, R. Geraldes, A. Gilmour, LNLS, Campinas, Brazil
T. Ruijl, R. Schneider, MI-Partners, Eindhoven, Netherlands

*e-mail: marlon.saveri@lnls.br

Abstract

The monochromator is known to be one of the most critical optical elements of a synchrotron beamline, since it directly affects the beam quality with respect to energy and position. Naturally, the new 4th generation machines, with emittances in the range of order of 100 pm rad, require even higher stability performances, in spite of the still conflicting factors such as high power loads, power load variation, and vibration sources. A new high-dynamics DCM (Double Crystal Monochromator) is under development at the Brazilian Synchrotron Light Laboratory for the future X-ray undulator and superbeam beamlines of Sirius, the new Brazilian 4th generation synchrotron [1, 2]. In order to achieve high-bandwidth control and stability of a few rad, as well as to prevent unpredicted mounting and clamping distortions, new solutions are proposed for cryostat fixation and thermal management. The design is based on flexural elements, aiming for a highly predictable performance, like support stiffness, crystal distortion and thermal insulation. It was optimised by using mechanical and thermal FEA, including CFD. Efforts were made to predict thermal boundaries associated with the synchrotron beam, including incident, diffracted and scattered power, for which the undulator spectrum was employed in the Monte Carlo simulation package – FLUKA.

Introduction

The goal of this work is to present the thermal management and the mechanical clamping concepts for the new high-stability DCM for Sirius.

Thermal Management

- Power load evaluation:
 - FEA spectrum simulation using radiation calculation tools: total incident power and power variation for energy scans as function of energy;
 - Scattering and absorption and Monte Carlo simulation: shielding design, radiation dose estimates and energy deposition;
 - Diffracted power by numerical estimate;
 - Black body radiation using FEA.
- Solutions:
 - Li, cryogenic cooling architecture;
 - Low-flow design for improved HT and vibration performance;
 - Thermal contact enhancement and strain reduction by indium interface;
 - Mounting flanges as effective thermal barriers;
 - Flexible copper straps for thermal links;
 - Low-power distributed foil heaters for active temperature control.
- Lumped-mass thermal model.
- Conductance design by hand-calculation and FEA.

Clamping Concepts

- Wire eroded flexures:
 - Deterministic design for high stiffness with thermal expansion compatibility;
 - Optimized relation between stiffness and thermal conductance.
- Preload solution:
 - Quasi-constant clamping forces over thermal expansion;
 - Flexure with suitable composition of disc washers.
- Slope error design target.

Conclusion

This work shows the thermal and clamping solutions for the new high-dynamics DCM for Sirius, which are important to guarantee the integrity and optimum performance of the crystals. Several analytical and numerical tools have been used in order to design them with specific targets regarding slope errors, thermal response, mechanical stiffness and manufacturability. This work will continue during the Detailed Design Phase and, after validation, may be extended to different systems, such as mirrors and other monochromators.

Acknowledgement

The authors would like to gratefully acknowledge the funding by the Brazilian Ministry of Science, Technology, Innovation and Communication and the contributions of the LNLS team, notably Materials and Optics groups, and the MI-Partners team.

References