
Abstract

Recent advances in synchrotron facilities have led to a growing

need for 6-DOF precise manipulation. Hexapods are the most

widely used parallel robots which provide 6 DOFs. To obtain high

precision and high dynamic performance in hexapods, it is

necessary to design them in such a way that low eigenfrequencies

are avoided (while the eigenfrequencies are also functions of the

complex 3D geometry of hexapods). Theoretically, maximizing the

lowest eigenfrequency leads to a condition where multiple

eigenfrequencies become equal, which is known as (complete or

partial) dynamic isotropy. Thus, one may consider a dynamically

isotropic hexapod as the optimal design solution, where precision

and dynamic performance is a goal. In this work, we analytically

address this problem and establish a practical guideline in order to

design generalized hexapods with complete dynamic isotropy. The

findings are based on the recently defended PhD dissertation by

Behrouz Afzali-Far.

Eigenfrequencies and eigenvectors (analytically formulated):

What is dynamic isotropy?

Dynamic isotropy is obtained when the following relation is

satisfied

from which it follows that all the eigenfrequencies are equal

It is analytically proven that for a hexapod (with massless struts),

the isotropic eigenfrequency is the absolute maximum of the

minimum eigenfrequency of the system

However, it is impossible to obtain dynamic isotropy in hexapods

due to the fact that for a single (rigid) body.

Generalized studies

To remove the classical isotropic constraint, we have generalized

our studies, as shown in Fig.2. Our generalized studies formulate

the conditions of dynamic isotropy in hexapods as well as the

isotropic conditions for the two kinematic arrangements which are

shown in Fig.3.

Novel isotropic architecture of hexapods

Based on the generalized studies, a novel architecture of hexapods

(GGSPs, see Fig. 4) is proposed, in which the classical isotropic

constraint is removed

and replaced by 

Main advantages:

 Dynamic isotropy for a wide range of inertia conditions

 Static and dynamic isotropy at the same time

 The struts (actuators) can still be identical, which is easy to 

design and fabricate
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Background of the project
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One of the isotropic conditions (known 

as the classical isotropic constraint):

Platform’s moments of 

inertia 

Fig. 1 Standard hexapod

Fig. 4 The proposed generalized hexapod (GGSP)

Fig. 2 A general 3D platform constrained at three arbitrary nodes
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Fig. 3 Arrangements of kinematic couplings: 

the 3-2-1 arrangement (left); the 2-2-2 arrangement (right). 


