Design, Construction and Commissioning of Two Highly Integrated Experimental stations for micro-focusing Macromolecular Crystallography (MX) Beamlines at NSLS-II

<u>Dileep K. Bhogadi</u>, Martin R. Fuchs, Jean Jakoncic, Babak Andi, Stu Myers, James Magill, Mary Carlucci-Dayton, Lonny E. Berman, Dieter K. Schneider, Bob M. Sweet and Sean McSweeney

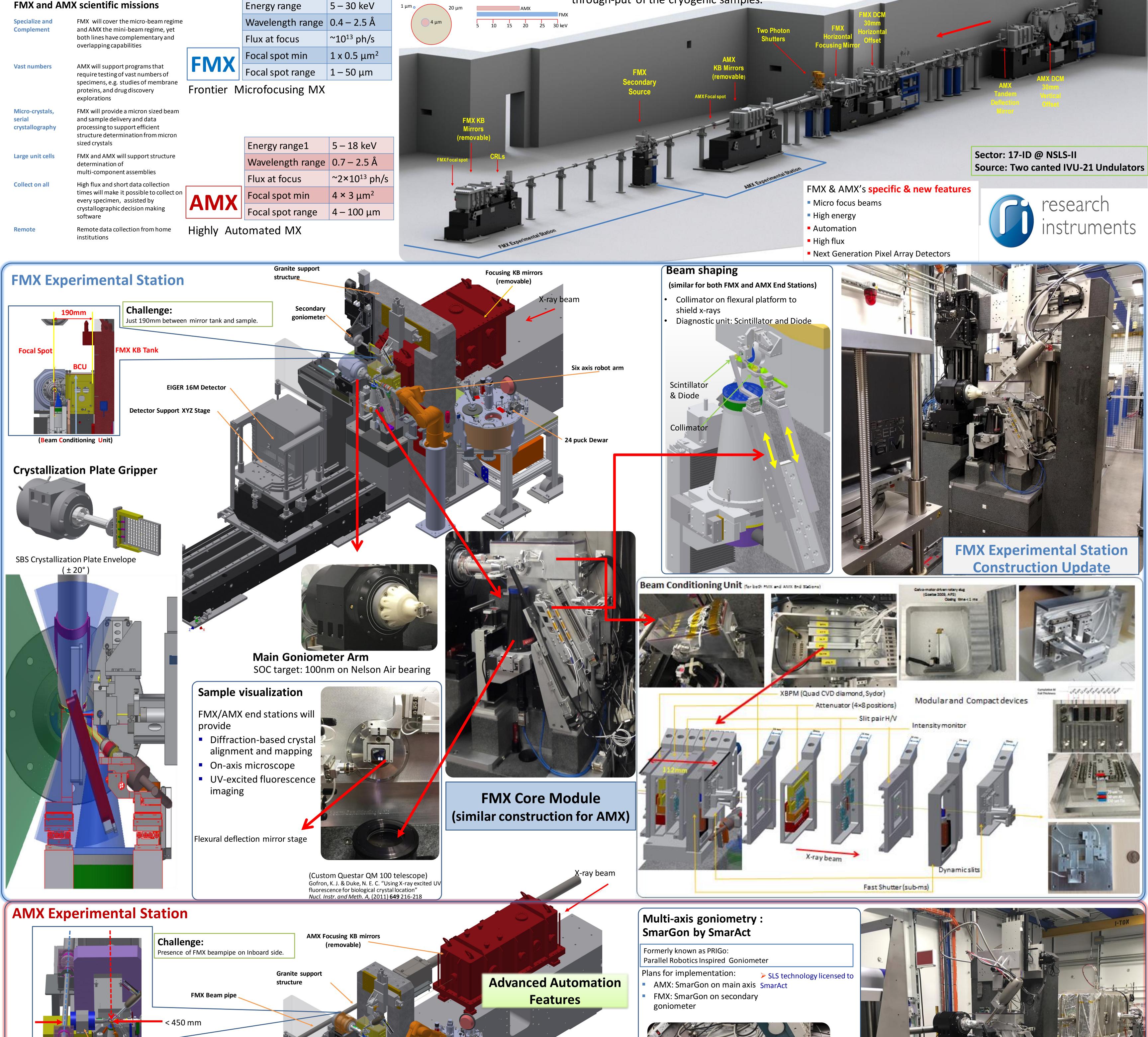
BROOKHAVEN NATIONAL LABORATORY

National Synchrotron Light Source II, Brookhaven National Laboratory, Upton NY, 11973, USA

dbhogadi@bnl.gov

U.S. DEPARTMENT OF ENERGY LIDS 2 NECHANICAL ENGINEERING DESIGN OF SYNCHROTRON

We present the final engineering design and first commissioning results of two highly integrated experimental stations for the micro-focusing (FMX) and the highly automated (AMX) MX beamlines at the NSLS-II. These beamlines will support a broad range of biomedical structure determination methods from serial crystallography on micron-sized crystals, to structure determination of complexes in large unit cells. These experimental stations are completely designed and fabricated in-house to meet challenging requirements resulting from the small beam size of 1 μ m and the extremely short working distance of only 190 mm from the beam exit window to the FMX focal spot.


PILATUS 6M Detector

FMX beam pipe

AMX secondary goniometer (optional)

Main Goniometer

The beam conditioning unit contains, within 140 mm, a beam position monitor, an attenuator, primary slits, an intensity monitor, a sub-millisecond shutter, and secondary slits. The diffractometers consist of an interchangeable high precision air bearing based main goniometer and a secondary goniometer for crystallization plates, both with a SOC of 100 nm on horizontal axes, an on-axis microscope with a customized reflective optics, x-ray fluorescence detector and dynamic beam shaping slits. Both these robotic end stations are integrated in a compact space on a granite machine bed with high modularity for future upgrades and extensions. Novel automation concepts are being implemented to increase the through-put of the cryogenic samples.

In-house gripper design

ATI tool exchanger

Adaptor plate

SIMBA w/ tracks

BIMBA switches

G10 thermal break

Low profile screws

Jni-body design

Six axis robot arm

Wedge stage to

Detector Support XYZ Stage

accommodate KB shift

Dowel pin held with screws

Collet modified to fit HEL

SLS PRIGo: Omega SOC < 1 μm

On SP150 Nelson Air Bearing.

AMX Experimental Station