Design of double-walled bellow cooling pipes for silicone oil used for the DSSC Detector project @ European XFEL.

Frank Okrent a,1, Matthias Bayera, Martin Lemkea

a Center for Free Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany 1 corresponding author: frank.okrent@desy.de for DESY Detector Group (FS-DS)

DSSC Detector

introduction

- DSSC (DEPMOS Sensor with Signal Compression)
- non-linear gain DEPFET Sensor energy range 0.5-6 keV
- with ~40000 μm² hexagonal pixels

The picture above shows the complete DSSC-Detector with vacuum vessel, Actuator- and Feedthroughflanges, Motionstages completed with cooling-block and electronics

This is a development project for Eu-XFEL led by the MPG's Semiconductor Laboratory.

Inner parts of DSSC

Movement of quadrants

- Cooling pipes are in fixed position at the back mainflange of the vessel

• Quadrants moves ±7 mm in each direction by medium-hole-position

- Cooling pipes are welded to connectors in copper-blocks
- this means that the pipes itself catch this movement without bring some force into the connection points in the cooling block

Cooling-block with included electronics

- the aim is to achieve -20 °C Sensor Temperature at every
- point of surface Silicone fluid has an operation temperature by -40 °C

presents a challenge particularly because ~400 W are put out by the electronics in the in-vacuum detector head (by sensors and electronics boards)

Requirements to cooling pipes

- sufficent cross-section for cooling performance, enough flow of silicone fluid
- Stainless-steel (weldable / vacuum compatible)
- liquid safe enclosed
- catch up the movement from the quadrants
- no force to connection points at the copper-blocks
- reliability about many years of user operation

from CAD-Model to real parts

The complete double walled cooling pipe (Prototype)

Cooling Pipe Test with moving

test environment (front view)

Original Actuators Test quadrants

- first cooling pipe welded in copper block
- fixed at AL-frame to simulate vessel

Summary

- Test result is very good
- no problems with feasibility
- Cooling performance should be tested with final copper-block

We will use this part at DSSC Detector Project

Acknowledements

- Martin Lemke, DESY ZM1, Construction Department
- Matthias Bayer, formerly DESY
- Company Witzenmann, Corrugated Bellows, www.witzenmann.de

Cooling-tube mountet at "middle size

hole postion" called "zero postition"

- movement from zero is ±7mm in each direction
- fluid temperature -60 °C
- cycle ~19 s
- movements rotatory: circle / cross
- Duration 24 h

