ESTIMATION OF TEMPERATURE FLUCTUATIONS HARSHNESS REGARDING STABILITY OF STRUCTURES IN THE NANOMETER RANGE

MEDSI 2016, Barcelona

Nicolas JOBERT
Mechanical Engineering Group
SYNCHROTRON SOLEIL
OUTLINE

• MECHANICAL ENGINEERING AT SOLEIL
• NANOMETER STABILITY: SOME CLARIFICATIONS
• DISTURBANCE SOURCES CLASSIFICATION
• THERMAL STABILITY IN NUMBERS
• THERMAL-MECHANICAL SUSCEPTIBILITY
 • MECHANISMS AT PLAY
 • PROPOSED PRACTICAL RULES FOR ESTIMATION
 • ILLUSTRATION AND VALIDATION
 • RELIABILITY ANALYSIS
• SUMMARY / CONCLUSION
Mechanical Engineering at SOLEIL
We are here!
NANOMETER STABILITY: SOME CLARIFICATIONS

- Ground motion at SOLEIL = *dozens* of nm (RMS !)
- Absolute stability is **not** required, but
- Mis-alignment **is** critical
- Alignment preserved if:
 - Ground motion is uniform
 - Supports deflections are small
NANOMETER STABILITY: SOME CLARIFICATIONS

- Ground motion at SOLEIL = dozens of nm (RMS !)
- Absolute stability is not required, but
- Mis-alignment is critical
- Alignment preserved if:
 - Ground motion is uniform
 - Supports deflections are small

Compact & stiff support structures => dynamic relative motion << 10nm
BUT for long (1h+) observation time, thermally induced error can be WAY higher
DISTURBANCE SOURCES
CLASSIFICATION

Thermal mechanical effects
- Internal:
 - beam heat load
 - motors heat load
 - coolant flow temp
- External:
 - hutch ambient air

Dynamic effects
- Internal:
 - motors
 - pressurized air
 - coolant flow
- External:
 - ground transmitted
 - acoustically transmitted
DISTURBANCE SOURCES
CLASSIFICATION

Thermal mechanical effects
- Internal:
 - beam heat load
 - motors heat load
 - coolant flow temp
- External:
 - hutch ambient air

Dynamic effects
- Internal:
 - motors
 - pressurized air
 - coolant flow
- External:
 - ground transmitted
 - acoustically transmitted

Design: no disturbance from heat sink
Reality: no perfect heat sink, non-zero perturbations
THERMAL STABILITY IN NUMBERS (1/2)

Common practice:
use peak-to-peak values

Water buffer - blue=bottom green=top

0.1°C
1 week
THERMAL STABILITY IN NUMBERS

(1/2)

Common practice:
use peak-to-peak values

Water buffer - blue=bottom green=top
Common practice:
use peak-to-peak values

Water buffer - blue=bottom green=top

0.1°C
1 week
THERMAL STABILITY IN NUMBERS

(1/2)

Common practice:
use peak-to-peak values

Water buffer - blue=bottom, green=top

0.1°C
1 week
THERMAL STABILITY IN NUMBERS (1/2)

Common practice:
use peak-to-peak values

Water buffer - blue=bottom green=top
THERMAL STABILITY IN NUMBERS
(1/2)

Common practice:
use peak-to-peak values

Water buffer - blue=bottom green=top
THERMAL STABILITY IN NUMBERS
(2/2)

AMPLITUDE PP
(millidegree C)
- 9 days => 100 mdeg
- 8 hours => 12 mdeg
- 4 hours => 10 mdeg
- 2 hours => 10 mdeg
- 1 hour => 10 mdeg

SIGNAL TYPE
- Steady trend
- No trend (random)
THERMAL STABILITY IN NUMBERS
(2/2)

AMPLITUDE PP (millidegree C)
- 9 days => 100 mdeg
- 8 hours => 12 mdeg
- 4 hours => 10 mdeg
- 2 hours => 10 mdeg
- 1 hour => 10 mdeg

SIGNAL TYPE
- Steady trend
- No trend (random)

Q: Where do we stand actually?
THERMAL STABILITY IN NUMBERS
(2/2)

AMPLITUDE PP
(millidegree C)
9 days => 100 mdeg
8 hours => 12 mdeg
4 hours => 10 mdeg
2 hours => 10 mdeg
1 hour => 10 mdeg

SIGNAL TYPE
Steady trend
No trend (random)

Q: Where do we stand actually?

A1: our reference fluctuations are 50%
of total error budget, it’s a mess!
THERMAL STABILITY IN NUMBERS (2/2)

AMPLITUDE PP

| (millidegree C) | 9 days => 100 mdeg | 8 hours => 12 mdeg | 4 hours => 10 mdeg | 2 hours => 10 mdeg | 1 hour => 10 mdeg |

SIGNAL TYPE

- Steady trend
- No trend (random)

Q: Where do we stand actually?

- A1: our reference fluctuations are 50% of total error budget, it’s a mess!
- A2: random temperature fluctuations have no effect whatsoever so stop worrying: We’re good!
THERMAL-MECHANICAL SUSCEPTIBILITY : MECHANISMS

Intuition: « fast » temperature oscillation do not propagate very far along support structure

\[\alpha = \text{thermal diffusivity} \ [\text{Length}^2/\text{Time}] \]

\[\alpha \left[\frac{\text{mm}^2}{s} \right] \sim 4 (\text{Invar}) \ldots 100 (\text{Al}) \]
Intuition: « fast » temperature oscillation do not propagate very far along support structure

Analytical solution: exponential decay

\[T(x, t) - T_i = \exp\left(-\frac{x}{\sqrt{\frac{\omega}{2\alpha}}}\right)\sin(\omega t - x \sqrt{\frac{\omega}{2\alpha}}) \]

\[T(0,t) = T_i + \Delta T \sin(\omega t) \]

\[\alpha = \text{thermal diffusivity} \quad [\text{Length}^2/\text{Time}] \]

\[\alpha \left[\frac{mm^2}{s} \right] \sim 4(\text{Invar}) \ldots 100(\text{Al}) \]
Analytical solution: exponential decay

Intuition: « fast » temperature oscillation do not propagate very far along support structure

\[\alpha = \text{thermal diffusivity } [\text{Length}^2/\text{Time}] \]

\[\frac{\text{mm}^2}{s} \sim 4(\text{Invar}) \ldots 100(\text{AI}) \]

\[T(x, t) - T_i \]

\[\Delta T \]

\[= \exp(-\frac{x}{\sqrt{\omega}})\sin(\omega t - x \sqrt{\frac{\omega}{2\alpha}}) \]

\[T_{\text{corner}}[s] \sim 6.3 \frac{L[\text{mm}]}{2}\alpha \]

\[\delta_{\text{effective}} = \sqrt{\frac{\alpha \cdot T}{2\pi}} \]
THERMAL-MECHANICAL SUSCEPTIBILITY: PRACTICAL ESTIMATION RULES (1/2)

- Random fluctuations ⇔ broadband spectral content
- Hence, harmonic formula not usable « as is »
- Need to SEPARATELY estimate severity of ALL frequency components
- Combine individual components into OVERALL harshness indicator

EXAMPLE: SPECTRAL ANALYSIS OF 8 HOURS TEMPERATURE DRIFT

Need for a simple, automated procedure
Estimate thermal mechanical « frequency response function »
\[H_{UTc}(f) \]
(structural response / unit temperature fluctuation)

Break down coolant temperature fluctuations into individual frequency components, i.e.
« PSD analysis » \(\hat{\Phi}_{TcTc}(f) \)
(degree\(^2\)/unit frequency bandwith)

Combine to obtain into actual response level
\[U_{rms} = \left(\int_0^{f_{max}} |H_{UTc}(f)|^2 \cdot \hat{\Phi}_{TcTc}(f) df \right)^{1/2} \]
Application case: Aluminum (CTE=23ppm/K, diffusivity=100mm²/s)

\[\Delta U_v \sim CTE \times \text{Height} \times \Delta T_{\text{coolant}} \]
Corner period as predicted by hand calc’s matches FEM analysis results 😊 … except for pointing errors ☹️ where AMPLIFICATION occurs
THERMAL-MECHANICAL SUSCEPTIBILITY : VALIDATION

- Benchmark vs direct calculations

<table>
<thead>
<tr>
<th></th>
<th>Transient</th>
<th>FRF</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_{\text{horizontal}}$</td>
<td>15nm</td>
<td>14nm</td>
<td>0.99</td>
</tr>
<tr>
<td>U_{vertical}</td>
<td>50nm</td>
<td>49nm</td>
<td>0.99</td>
</tr>
<tr>
<td>$R_{\text{transverse}}$</td>
<td>43nrad</td>
<td>44nrad</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Near perfect agreement
PRACTICAL USAGE: RELIABILITY ANALYSIS

RANDOM FLUCTUATIONS
- Deterministic figures of merit (« Peak to peak ») amplitude meaningless
- Need to define amplitude into a probabilistic sense
- Common practice at SOLEIL: Probability Of Exceedance For Given Allowable Drift (AD)

Need to know:
- RMS amplitude U_{RMS}
- Observation time T_s

\[P(|Drift(T_s)| > AD) = 1 - \text{erf} \left(\frac{AD}{\sqrt{2}U_{RMS}(T_s)} \right) \]
PRACTICAL USAGE: RELIABILITY ANALYSIS

RANDOM FLUCTUATIONS

- Deterministic figures of merit (« Peak to peak ») amplitude meaningless
- Need to define amplitude into a probablistic sense
- Common practice at SOLEIL: Probability Of Exceedance For Given Allowable Drift (AD)

Need to know:
- RMS amplitude U_{RMS}
- Observation time T_s

$$P(|\text{Drift}(T_s)| > AD) = 1 - \text{erf} \left(\frac{AD}{\sqrt{2}U_{RMS}(T_s)} \right)$$

NB: Other statistics (mean time between exceedances, etc..) could be estimated
For unstable environments, clear trends exist:
• « static rules » apply
BUT, for stabilized environments, fluctuations are mostly random
• need for *ad hoc* estimations procedures
For unstable environments, clear trends exist:

- « static rules » apply

BUT, for stabilized environments, fluctuations are mostly random

- need for *ad hoc* estimations procedures

- Exact (time domain) analysis is not needed
SUMMARY / CONCLUSION

For unstable environments, clear trends exist:

• « static rules » apply
• BUT, for stabilized environments, fluctuations are mostly random
• need for *ad hoc* estimations procedures

• Exact (time domain) analysis is not needed
• Frequency domain approach allows for quicker results and improved understanding
SUMMARY / CONCLUSION

For unstable environments, clear trends exist:
- « static rules » apply
- BUT, for stabilized environments, fluctuations are mostly random
- need for *ad hoc* estimations procedures

- Exact (time domain) analysis is not needed
- Frequency domain approach allows for quicker results and improved understanding
- When dealing with random phenomena, go ahead, don’t be afraid of using statistical indicators 😊
SUMMARY / CONCLUSION

For unstable environments, clear trends exist:
- « static rules » apply
- BUT, for stabilized environments, fluctuations are mostly random
- need for *ad hoc* estimations procedures

- Exact (time domain) analysis is not needed
- Frequency domain approach allows for quicker results and improved understanding
- When dealing with random phenomena, go ahead, don’t be afraid of using statistical indicators 😊

Severity of random temperature fluctuations cannot readily be assessed at face value.

Using the proposed procedure, a minimum analytical effort can provide reliable quantitative estimates of setup reliability
THANK YOU FOR YOUR ATTENTION

QUESTION & COMMENTS ARE WELCOME