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1. Basics of x-ray mirror optics

=  Focusing with reflective optics
= Surface error, aberration
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error 400 mm (toroidal) Mirror 1200 mm (plane elliptic)




To focus (v.)

An optical system images (stigmatically) an object point A, onto an image point A’ if all
the rays that depart from A, and reach the optical system, gather at A, independently of
their direction.

4 )

Image point
object point

Optical system
Examples of focusing systems are:

A pinhole, lenses (refraction), mirrors (reflection), Fresnel lenses (diffraction). In (almost) all
the cases the focusing element deviates the direction of the incoming rays.
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Rays vs Waves

X-Rays are waves (and photons are their Geometrical optics, is an approximation,
quanta), and to be precise one should do based on propagation of rays.
wavefront propagation.

Rays
/ Rays are the lines that

indicate the direction of
propagation of energy,
direction of variation of
phase

Wavefront A Wavefront is the surface of points
at the same optical path distance
from the emission point. (for us, at

* 9 the same distance), i.e. phase is
constant across a surface

“Rays are perpendicular to wavefronts”
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Ray tracing vs wavefront propagation

Point source i i
Toroidal mirror

100x10 mm?

Im

hv=24eV — A=50 nm hv=123eV —A=10 nm Ray tracing

| 100 pm

Although raytracing cannot account for diffraction or interference effects, it
reproduces accurately the images if energy is high enough (short wavelength)
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Effect of the source size

130x6 um?2
gaussian source

Toroidal mirror
100x10 mm?

6m
Im

hv=24eV — A=50 nm hv=123eV —A=10 nm Ray tracing

100 um

. The source size of the electron beam reduces the coherence of the beam, and
reduces the contrast of wave effects.
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Focusing with mirrors

mirror

“The sum of the distances to
the two foci is constant for all
the points of an ellipse”

Ellipsoidal mirror\‘*
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Stigmatic imaging e

An ellipsoidal mirror focuses point-to-point stigmatically
(or anastigmatically)

y [pm]

Ellipsoidal mirror ™
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Stigmatic | |mag|ng

An ellipsoidal mirror focuses point-to-point stigmatically
(or anastigmatically)

or\ is NOT always the

ion =2 higher figuré errors

-cce pricat
Difficult fa > aberrations

J. Nicolas MEDSI’16



Aberrations

The approximation of the toroidal mirror to the ellipsoid is “
accurate only in the center of the mirror. E,

Rays far from it are not properly focused.

-40 -20 20 40

X [um]

Toroidal aberration
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Aberration computing

A Approximate torus equation
" 2 2
u %
h(u,v) = ==+ —
(wv) 2R 2r

Optical path difference

OPD(u,v) = |IM — Al + [|B — M||
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Image condition

We need to compute the optical distance between object and mirror, and between mirror
and image.

A M= (g~ M2 + (4 — M) + (4, — M)

It can be expressed as a Taylor series

FAB(urvlpr q,Q, IBI ri) — 7 7 an(pr q,Q, :8' 7"i)unvm
Iin=0 &=—dm=0

1 an+mF
n!m!dunovm™

Fm( . q,a,6,R;) =

(0,0|p,q,a,ﬁ,7‘i)
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Main aberrations

* F,ymeridional defocusing*

cosza<1 1 2 )
p q Rcosa

* Fy,sagittal defocusing

1/1 1 2cosa
ramyhed- 2 »
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* F3yprimary coma*

sinacos?a/1 1\/1 1 1
e e

2 p q 5 E_Rcosa

* F;,astigmatic coma

20

Fo F39 Will appear again on the tutorial
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Varying the incidence angle

The basic equation for paraxial optics is the focus condition

Meridional focusing Sagittal focusing

R
P
(04
112 q
p q Rcosa 300 _ | _ 4=
Sagittal
€ 200 Meridional al p q r
E /
}E 100 y
go / /
g -100 //
-200 : : :
-1 -0.5 0 0.5 1

incidence angle variation (mrad)
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Varying the incidence angle

When one changes the pitch of a focusing mirror, one steers the beam, but also changes
the incidence angle (therefore the focusing).

dz; = 2qdP + 1-3)az dP=—1 dZI+—p_qd9
p p+q p2+q
dZ P Pq

— _z dZ = ——dz, ———db
df = +dP > p+q 1 ptg

N_"dP | For a fixed figure Two motors (pitch, z)

! control four optical parameters (focus,
l ‘ y % TdZ Beam angle, spot position, footprint

center / coma)

Special cases. 1:1 magnifiction. Flat mirrors
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Figure error: slope
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Figure error for coherent sources (a case)

For diffraction limited imaging (FELs) , one
needs to control the wavefront distortion,
which is given by the residual height error.

1.2

—_
T

o
©

o
o

Just consider the case in which the mirror is perfect
almo.gt everywhere except for a step in the center.

Intensity [a.u.]

°
~

~
N ~

o
N

-slope exror.is very small,

, ©
[§)]
o}
[&)]

- There is ne_light on axis due to destructive
interference between the two sides of the
wavefront N o
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Figure error: height error

Interference effects in image formation are given by the Strehl ratio (actual peak
intensity to the error free peak intensity)

1-S
<A
rms 41T cosa

Example
LCLSII-S=0.97-2.1 mrad -13 keV =» 0.4 nm rms
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Some reference values of figure error

4,5 Quickly evolved in the recent past:
4 —¢—plane
NERE— * Development of mirror metrology
3,5 A X,
5 5| ° —#—cylindrical  Deterministic polishing
© N .
3 ™, - % - toroid techniques:
() %2 1 :
a : — s —ellipse
L2 2 - x. N\
3 S . X == = ®accuracy of slope measuring profiler
@ 157 Most (usual) companies can deliver
14 Perfect optics within | mirrors better than 0.5 urad rms, on
05 1 Mmma_ T WK the et 2°| vears? |\ whatever figure and length.
0 , e .
ie8s 500 . Saso smee »oa0 FOr flats error is sub-nanometer, and

slope error below 100 nrad, cost and
delivery time.

Sagittal curvature always difficult
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Causes of figure error

* Fabrication error (figuring,
polishing metrology) : well
below 0.5 urad rms

* Gravity sag.
e Clamping mechanics.

e Stress induced by cooling
scheme.

 Thermal deformations.

* Bender errors, ellipse Mirror alone: R=331.039 m /0.163 prad RMS
approximatino errors In holder: R =338.303m /0.533 prad RMS

* Coating stress! Bakeout (First iteration)

developed stresses (?)
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Misalignments

No error

Point source

Ellipsoid at 3 deg
100x10 mm?

Y [pm]

Im

A=10nm

A=10nm

Error Aq =0.5% Pitch error 50urad

Yaw error 50urad

oy [ppm]
y [pm]
y [pm]

-40 -20 0 20 40
X [um]

x [pm]

FOV is 100 um
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Kirkpatrick-Baez configuration

By decoupling vertical and horizontal focusing, one can obtain aberration free focusing by
using high quality mirrors polished flat, with low slope error, and mechanically bent onto
plano-elliptic figure.

2ees

Focused beam

J. Nicolas MEDSI’16



Some KB advantages

e Decouple horizontal and vertical planes

* Astigmatic sources or images
* No sagittal curvature

* Allow different stripes

* More accurate metrology

* Relaxes alignment requirements (no sagittal curv.)
* If bender

e Start from flat or spherical mirrors

* Adaptive focus and primary comma

* Several foci

* Focus independent of alignment

J. Nicolas MEDSI’16






2. Characteristics of elliptic mirrors

=  Geometry of the ellipse.
= Height, slope, curvature.
= Polynomial approximation.



Description of an elliptic mirror

Major semi-axis Half distance between foci
(linear eccentricity)
_pta 1
“a= c=§\/'p2+q2—2pqc052a
Minor semi-axis eccentricity Orientation
b = \/pqcosa 2 tant/;zq_pcota
e = 1—(m)pqcosza q+p
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Equations of the ellipse

A (q§ina,qcosa)

Vector equation of the ellipse

”rA - l'm” + ”rAr — rm” =p+q

Implicit equation of the ellipse (as a function of coordinates)

J(x + psina)? + (y — p cosa)? ++/(x — g sina)2 + (y — q cosa)2 =p + q

J. Nicolas MEDSI’16



Explicit equations of the ellipse

Concave branch of the explicit solution of the ellipse

x(p? —q?)sin2a —4(p + q) cosa (pq — VPV pq — x(p — q) sina — xz)
p?+ 6pq+q*> — (p — q)? cos 2a

y(x) = —

* Note that y(0)=0
 This is an exact solution!

Slope function of the ellipse

VPq((p — @) sina + 2x)
Vprq —x(p — @) sina — x?

2(p+q)cosa|l (p —q)sina —

dy B
E(x) = =

p? + 6pq + q%? — (p — q)? cos 2«

* Note that y’(0)=0
* This is an exact solution!

J. Nicolas MEDSI’16



Curvature and imaging condition

Curvature of the ellipse

1 dzy( ) VPa( + q) cosa
= x =
R(x) dx? 2[pg — x(p — q) sina — x2]3/2

 Note that it is not constant

Curvature at the center of the ellipse

1 (p+q)cosa 2 _1.1
Ry 2pq Rocosa p ¢q

» |tis the focusing condition (mer)

J. Nicolas MEDSI’16



Taylor expansion of the ellipse

Definition

- . _1d%
y(x) = z E,x™ with En=S7m
n=0

x=0

In the case of an ellipse, the coefficients are functions of p,q and a

E_cosa(l_l_l)_ 1 E_sinZa(l 1)

7 4 \p q) 2R, 3716 \g? p?
E2 E3(7 —3csc?a

E, =—(5—csc?a) + E3sec?a Ec = s( > ) + 3E5E; sec? a
AE, 42

E3(21 —14csc? a + csct a)
8E>

Ec = + E,E2(7 — csc? a) sec? a + 2E3 sec* «

J. Nicolas MEDSI’16



Aberrations, revisited

Defocus is given by the quadratic term of the ellipse polynomial

cosza<1 1 2 )

Foo— cosa(l 1) 1
20 — 2

Fy =2 4+ -—
20 COSC([ » q R

__|___
p q Rcosa

Fy0 = 2cosa AE,

Primary coma is given by the cubic term of the ellipse polynomial

v sinacosza(l 1) (1+1 1 ) s , sin2a<1 1)
= —— =)=+ —-- = —2cosa ———
30 2 p q/\p q Rcosa 30 16 \g? p?
_sin2a /1 1
. 37 716 (? —F) F30 = —2cosa AE;
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3. Mirror bender calculations and metrology

= Euler-Bernoulli equation
= Rectangular footprint case
= Custom footprint case



Elastic beam theory

Euler-Bernoulli equation Bending moments
dZ
E-100)5—2(x) = M(x) M@ = ) (- x)F
[x;<x

* z(x) is the deformation induced by the load. [m]
*  M(x) is the distribution of bending moments along the mirror
* Ejsthe Young’s modulus of the body.[N/m?]

* I(x) is the second moment of inertia of the mirror substrate section. [m?]

Second moment of inertia For a rectangular section

3
I(x) = ﬂ z%dxdz I _bh

1 1 Section < E
‘b
2 )

-

J. Nicolas MEDSI’16




Integration (rectangular mirror footprint)

I r“i
' Fy Fp '
M@ | \
a L—a L~
General Solution to Euler-Bernoulli’ equation For constant section mirror the solution
M(x") is a third degree polynomial

X
= co+ Cox + dx’ dx”
z(x) =c, + c1x j—L/Z f_ LR E1G0) x' dx
z(x) = c, + cyx + szz + E3x3

E, = (Fy + Fp)

Ebh3

J. Nicolas MEDSI’16



Rectangular mirror footprint

* The sum of forces controls the main curvature (and the

k= Ebh3 (Fy + Fp) defocusing)
£ 2a 28 (F, —Fy) * The difference between the forces controls the
3~ Ebh3L u eccentricity (and primary coma)
E; E3 N Esy  Esp/\Fp
Curvature (E2) [km-1] 8 10-6 EccentriCity (E3) [m-Z] Accuracy of the linear fit
3 0.1 aE;
0.026 | 2@\\ 008 DN
0024 1] \\\ F 0.06
0.022 | 0 | ) § 0.04 F,=)203N
0.02 | 1 X g F,=50.1N F,=50.1N F_#99.7N
0.0184 » \ g 002 F ‘=50.0N i :18%0NN F_=9 F =603 N
0.016 | 3 G\\ ) E of D EU=996.0 { F,=80.3N
0.014 4 | N \ i -0.02
| b R 004 |
: 100 100 '\‘/\\G/\ -0.06 , , , | |
1 2 3 4 5 6
Force 50 6o 80 100 120 Force 50 0 80 100 120 Measurement No
Downstream [N] Force Downstream [N] Force .
Upstream [N] Upstream [N] fit better than about 50 nrad rms

(metrology limited — too quick)

J. Nicolas MEDSI’16




High demagnification ellipses

The error of the cubic polynomial approximation is given by:

Yerror (X) = Yexacr(x) — szz - E3x3

yERROR(x) =
x(p? — q?) sin 2a — 4(p + @) cosa (pq — VPAPI — 2 — P sina—*2) cosa 1 1 , sin2a/1 1
: S G- )
p? +6pq +q? — (p — q)% cos 2a 4 \p q 16 \q? p?

For high demagnification ellipses, higher order aberrations are significant

Fu=7 N, FD=269 N,Error:6.267 nrad
400

300
For ALBA’s LOREA beamline HFM
10:1, 400 mm long, this error is in
the order of 6.3 urad rms

200 r

100

Height Error [nm]

o
T

-100 |

-200 -150 -100 -50 0 50 100 150
Position [mm]

MEDSI’16
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Varied width mirrors

Deformation equation includes curvature:

Eb(x)h3 d?y 2x
12 dxz(x)_MO-l_AMT

By inserting the exact curvature profile, we have the definition of the required mirror width.

Eb(x)h3 + q) cosa 2x
(x) VPq(p CI). ~ My + AM
12 2[pq —x(p — q) sina — x2]3/2 L

The solution depends on the forces one can apply.

1 2x\24[pq—x(p — q) sina — x?]3/2
Y ) lpg —x(p — @) sina — x7]
b, L Eh3\/pq(p + q) cosa

Often b(x) is just approximated by a low order polynomial variation

1
b(x) = b, (b—MO
0

J. Nicolas MEDSI’16



Examples of varied profile mirrors

Mirror width profile for a 10:1 demagnification mirror, for different bending

moment combinations.
20 [
20 |
-200 0 200
20 [ j ]
20 |
~200 0 200

J. Nicolas

20 [

-20 |

20

20 |

~200 0 200
~200 0 200
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Model of deformation

Deformation of the mirror, in this case, is NOT a polynomial.

Eb(x)h3 d?y 2x
12 dxz(x)_MO-l_AMT
Eb(x)h3 d?*y

x 1 x 1
12 dxz(x)=a(Z_E)F”_a(Z+§)FD

... but it is still a linear combination of two functions.

Base Functions

20 ¢

y(x) = Fyyp(x) + Fpyp(x)

S
[ Eb(x)h3d%y, x 1 é-m-
| “12a  dx? D =7-3 £of
Eb(x)h3 d?y; ax 1 T 30l
L 12a dx? 2" L 2 40

-150 -100 -50 0 50 100 150
Position [mm]

MEDSI’16
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Metrology of varied width mirror benders

After fitting data to the proposed base of functions, residual
figure (polishing error) is equal for all bending positions

F,=201.0N Residual Erro
. . i rror
Accuracy of the linear fit F,=250.0N esidua
F =50.4 N 20 F #1:0.330 urad
0.6 u #2:0.385 urad
FD=399.3 N #3:0.401 urad

@ #4:0.378 urad
P - #5: 0377 urad
#6: 0.341 urad

©
N
T
-
()]

o

o
T
-
o

o
N
L

Fit Error [N rms]
o
Residual Height [nm]
(6)]

0 \\ )
0.4} ] / \\ ‘
oo} ° \V \\/
5l -1I50 -1(I)0 -E;O (I) 50 160 15;0

Position [mm]
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4. Mechanical design of mirror benders

=  Functionalities of bender

= Parasitic forces

= Cyl benders, U-type, 4-point, scissor,
bimorph, ...



Cylindrical l?encllerw

A zoo of mechanical solutions

S-spring bender

L3 \

p—
& attachrment
= block

£ [T et sping

.:‘: SACeway

r“—l<F

—

anti-lever bender

[2 81746003

ESRF-Scissor bender

Four-point bender

"5' -
> > x
e .
\'J’J:*
s
KA
Iy
Iy %
>

&7

Wy
<

L/’«



Mechanical design of benders

Functionalities of a bender

1. To introduce the forces that deform the
mirror to the required ellipse within
tolerances.

2. To minimize parasitic forces that
introduce undesired deformations

3. To introduce forces that deform the
mirror to compensate gravity sag or
other errors

J. Nicolas MEDSI’16



Mechanical design of benders

Functionalities of a bender

* Fix the application point and
direction

1. To introduce the forces that deform the
mirror to the required ellipse within
tolerances.

 Demagnify motor
displacements to nanometer
resolution deformation

J. Nicolas MEDSI’16



Apply controlled forces

* Fix the application point and
direction

 Demagnify motor
displacements to nanometer
resolution deformation

Flexure hinges point to the
“rotation” point.
Mirror is glued (monolithic)

Lever (+bending ?) demagnifies
motor linear motion to an angle
constraint on the mirror ends.

J. Nicolas MEDSI’16



Apply controlled forces

* Fix the application point and
direction

Demagnify motor
displacements to nanometer
resolution deformation

Pivot in center of contact
surface ensures force is
normal to the surface, and
fixes application point

(Not visible) Force is exerted by a
hellicoidal spring in compression

MEDSI’16



Apply controlled forces

* Fix the application point and
direction

Demagnify motor
displacements to nanometer
resolution deformation

Ao

Demagnification of motor
displacement by elastic
bending of the cantilever

J. Nicolas MEDSI’16



Apply controlled forces

* Fix the application point and
direction

Demagnify motor
displacements to nanometer
resolution deformation

Demagnification of
motor displacement by
a rigid long lever arm

J. Nicolas MEDSI’16



Mechanical design of benders

Functionalities of a bender
* Avoid twist

1. To introduce the forces that deform the * Avoid forces along longitudinal
mirror to the required ellipse within axis
tolerances.

2. To minimize parasitic forces that
introduce undesired deformations

3. To introduce forces that deform the
mirror to compensate gravity sag or
other errors

J. Nicolas MEDSI’16



Control parasitic forces

* Avoid twist
* Avoid forces along longitudinal
axis

Virtual pivot to manually adjust
the twist of one end of the mirror
during metrology tests

J. Nicolas MEDSI’16



Torsion (twist) adjustment

before twist correction

after twist correction

There are benders which are torsion free, and others which allow correcting it

J. Nicolas MEDSI’'16



Control parasitic forces

* Avoid twist
* Avoid forces along longitudinal
axis

Bending force actuators allow
pitch and roll to avoid
introducing undesired
deformations

Rolled articulation (on one side
only) to allow the mirror settle its
twist freely.

al TP

J. Nicolas MEDSI’16



Mechanical design of benders

Functionalities of a bender
* Gravity sag compensation

3. To introduce forces that deform the
mirror to compensate gravity sag or
other errors

J. Nicolas MEDSI’16



Gravity sag compensation

* Gravity sag compensation

Manually adjustable
springs, for gravity
e e & §1  sag compensation

AAA

-"' 1

J. Nicolas MEDSI’16



Adaptive optics

Gravity sag compensation
Adaptive optics

Silicon

Piezo Ceramics

Silicon

Piezo — electric corrctors
embedded in the mirror bulk

HV electrodes

J. Nicolas MEDSI’16



Adaptive optics

* Gravity sag compensation
* Adaptive optics

- - Nanometer resolution —stiff-
-_- . " . . .
: uni 3 T 1~ pushing/pulling motors

Shape correction actuators
. ] -

main curvature actuator

J. Nicolas MEDSI’16



Adaptive optics

* Gravity sag compensation
* Adaptive optics

Force-stabilized — motorized
correctors.

J. Nicolas MEDSI’16




Adaptive optics
Results of the ALBA-SENER nanobender

Using 4 actuators, 500 mm

Initial slope error ~ 0.87 prad rms Slope Error:  0.115 prad rms
Initial surface Error: 23.2 nm rms Surface Error: 0.858 nm rms

= N W A O
OO O O o o

4
o

o
o

Achieved
Optimal
Difference

&
S

Height error [nm]
A
o o
Height error [nm]
a A WO D = O = N WO + O

o
o

-200 -100 0 100 200 ) -200 -100 0 100 200
? Position [mm] Position [mm]

Difference to model-base
optimum of 0.08 nm
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Adaptive optics

The correction is preserved within the nanometer with variations of the
radius of curvature of 35% .

-
(@)
1

R=2.94km
R=3.56km
R=3.98km

Height error [nm]
o oo A D O N b O

-200 -100 0 100 200
Position [mm]

4
o
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Backup slides — gravity sag correction

= Rectangular footprint case
= Custom footprint case



J. Nicolas

R WNR

Gravity sag calculation

Equilibrium of forces and torques: to determine all the forces.

Function of momenta: to determine the RHS of the E-B equation.

Integration.
Boundary conditions: to determine the integration constants.

MEDSI’16



Equilibrium of forces

L

* All forces and torques must add to zero, otherwise the mirror would be &ccelerating
linearly or angularly.
» Torques are calculated from the origin of coordinates (not the center of the mirror)

J. Nicolas

F;+F,—gpLbh=0
gpL?bh 0

a F; +aF, —

2

a, —L/2
F, =gm

a, —aq

L/2 — a4
2 = gm
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Function of moments

Region I. (only weight)

X
— - r Y F,(x) = —gpbhx
gobhx X
: ag(x) = 3
——— I'. x
E "n
i . M (x) = Fy(x) (x — ag(x))
! 2| x
i } -1 bhx?
FAN P = 29,0 X
Mix) Il v i

: . :
J. Nicolas MEDSI’16



Function of moments

Region I. (only weight)

X
- - Fy(x) = —gpbhx
qgobhx X
s Ag (x) — E
—— : x
| S
A I N
g (0 L'i' " X E
' - x =
A 4
" ‘ X
I & |
a'L'bnl.'."
Mix) T v m
L ; 2 : -

J. Nicolas MEDSI’16



Function of moments

Region II. (weight, F;)

X
' A AN MII (X)
gobh: 1 -
: - _Egp X
'. X + F1 (x —_ al)
T
\ ' s Region lll. (weight, F,, F,)
F, ,
! 1
" f My (x)
gobhx - — Egpbhx
vl . ¥ i, + F;(x — aq)
+ F,(x — a,)
L - E
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Integration (1)

* FEach region has to be integrated separately, because the function is not
continuous.

* Inall the cases the function of momenta is a polynomial of order 2. Which when
integrated twice becomes a polynomial of order four.

ze(x) = zg + z1X + Zyx% + z3x3 + z,x*

CilixG(x) = 7, + 22yx + 3z3x% + 4z,x3
C:;G (x) = 22, + 623% + 122,%°
By defining : We have:
L Ebh3 Ebh3 d?z, ,
12 7 dx? (x) = 2kz, + 6kz;x + 12kz,x
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Region I.

1 2
M;(x) = —5gpbhx

Implies

A, =0

A3 =0
gpbh

- 24k

4 =

Unknown

Ao, A4
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Integration (2)

ZkZZ + 6k23x + 12kZ4x2 = M(X)

Region II.

My (x)
— —a1F1 + le

1
— Ebghxzp

Implies

a k1
2k

F1

" 6k
bghp

vT T ek

Unknown

B, = —

B

Bo, By

Notation change !!!
zi = Ay, By, C;

Region lIl.

My (x)
= (—a1F; — ayF,) + (F,

1
+ F,)x — =bghx*p

2
Implies
a1F1 + aze
T
F,+ F,
C, =
3 6k
_ bghp
YT 24k
Unknown
Co, €1
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Boundary conditions

1. Continuity between regions + at 2. Derivability (continuity of 15t
tbese points deformation is zero derivative) between regions
Zi(a1) =0 _
I(( 1)) zi(a1) = zj1(ay)
zi(a;) =0 _
111 zi(az) = zp(az)
zi(az) =0
zi(az) =0

The system is linear on Ay, A, By, B3, Co, C;, and can be solved with unique solution
(using Mathematica).

=>» See Mathematica Notebook: GravitySagCalculation.nb
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Example of gravity sag correction

A mirror measured with supports at the Bessel points and at the ends. Gravity sag is
removed in both cases.
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Gravity sag of arbitrary profile mirror

The width of the mirror is not constant
Eb(x)h3 d?z,
12 dx?

(x) = Mg (x) + M;(x) + Mz (x)

M: gravity, M;: support 1, M,: support 2

Calculating Mg .
e Mass at the left of x: m;(x) = ph (j b(x’)dx’) Iy (x)
_L/2
* x I (x
® MCISS center: XL(JC) =J x’b(xl)dxl/f b(x/)dx[ 1( )
~L/2 _L/2 Io(x)
y (M2 M;(x) = [x — x;]F;0(x — x;)

6 (x) Heavyside Step function
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Gravity sag of arbitrary profile mirror

The width of the mirror is not constant.

The equation is no-longer the integral of a polynomial.

d?zg . . 5 Mg (x) + My (x) + Mp(x)
Tz ) = Eb(x)h?

It can be integrated numerically.

All the functions of x become vectors (linear arrays)

f(x) = flxn) = f(ndx) = fp
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Moment of inertia of the weight

Calculating Mg(x) .
e Mass at the left of x: m;(x) = ph (j b(x')dx')
~L/2
X X
* Mass center: x;(x) = j x’b(x’)dx’/f b(x")dx'
—L/2 —L/2

These become numerical integrals

n n n
(my)n = phAx 2 by (xp)n = Z xmbm/z bm
m=1 m=1 m=1

And the final expression of Ms(x) is also a vector

Mg(x) = —gmy (x)[x — x,(x)] (Mg)n = —g(my)nlxn = (x1)n]
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Moments of inertia of the supports

Calculating M;(x), M,(x)

* Need to know the actual values of F; and F, (not just its expression as a function
of mirror dimensions).

o Xyp — X
1=9gm
gmyg Xy — %1
F, = gm, —X1 T X my: total mass
Xy — X1 Xo: mass center of the mirror

e They can be written in close expression using the Heaviside function step function

M;(x) = (x — x))F;0(x — x;)

(M)n = (xn — x)F;0(xp, — x;)
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Integration

* Once all the functions of x are evaluated, they can be numerically integrated

* Note that, since we use close expressions, there are no boundary conditions
between zones.

XX M:(x") + M{(x") + M, (x'
z(x)=co+c1x+j J 12 6 () 31( ), 2( )dx’dx"
~L/27-L/2 Eh>b(x')

Which becomes

(Mg)p + (M1), + (M)
Zn = Cop + C1 X, + Eh3zz P 2 P P
p

m=1p=

Average height and average pitch are undetermined. Often, these are simply
set to average zero as they do not carry information about the mirror figure,
but about its position.
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