
J.	Nicolas MEDSI’16

Optics and mechanics of mirror benders

Josep Nicolas
Claude Ruget
Carles Colldelram



J.	Nicolas MEDSI’16

1. Basics of x-ray mirror optics
2. Characteristics of elliptic mirrors
3. Mirror bender calculations and metrology
4. Mechanical design of mirror benders
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1. Basics of x-ray mirror optics
§ Focusing	with	reflective	optics
§ Surface	error,	aberration
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Mirror 400	mm	(toroidal) Mirror 1200	mm	(plane elliptic)

A	mirror in	its vessel
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An	optical	system	images	(stigmatically)	an object	point	A,	onto	an	image	point	A’ if	all	
the	rays	that	depart	from	A,	and	reach	the	optical	system,	gather	at	A’,	independently of	
their	direction.		

object	point
Image	point

Optical	system

Examples	of	focusing	systems	are:	
A	pinhole,	lenses	(refraction),	mirrors	(reflection),	Fresnel	lenses	(diffraction).	In	(almost)	all	
the	cases	the	focusing	element	deviates	the	direction	of	the	incoming	rays.

To focus (v.)
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Rays vs Waves

Rays are	the	lines	that	
indicate	the		direction	of	
propagation	of	energy,	
direction	of	variation	of	
phase

X-Rays	are	waves	(and	photons	are	their	
quanta),	and	to	be	precise	one	should	do	
wavefront propagation.

Geometrical	optics,	is	an	approximation,	
based	on	propagation	of	rays.

A	Wavefront is	the	surface	of	points	
at	the	same	optical	path	distance	
from	the	emission	point.	(for	us,	at	
the	same	distance),	i.e.	phase	is	
constant	across	a	surface

“Rays	are	perpendicular	to	wavefronts”

Rays

Wavefront
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hν=24eV	– λ=50	nm Ray	tracing

6	m
1	m

Point	source Toroidal mirror
100x10	mm2

100	μm

Although	raytracing	cannot	account	for	diffraction	or	interference	effects,	it	
reproduces	accurately	the	images	if	energy	is	high	enough	(short	wavelength)

hν=123eV	– λ=10	nm

Ray tracing vs wavefront propagation
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6	m
1	m

130x6	μm2

gaussian source
Toroidal mirror
100x10	mm2

100	μm

The	source	size	of	the	electron	beam	reduces	the	coherence	of	the	beam,	and	
reduces	the	contrast	of	wave	effects.	

hν=24eV	– λ=50	nm Ray	tracinghν=123eV	– λ=10	nm

Effect of the source size
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object

mirror

image

Ellipsoidal mirror

Focusing with mirrors

“The	sum	of	the	distances	to	
the	two	foci	is	constant	for	all	
the	points	of	an	ellipse”
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Stigmatic imaging
An	ellipsoidal	mirror	focuses	point-to-point	stigmatically	
(or	anastigmatically)

Ellipsoidal mirror

Local	curvature	is	
not	constant

Sagittal	curvature		
varies	from	upstream	
to	downstream
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Stigmatic imaging
An	ellipsoidal	mirror	focuses	point-to-point	stigmatically	
(or	anastigmatically)

Ellipsoidal mirror

Local	curvature	is	
not	constant

Sagittal	curvature		
varies	from	upstream	
to	downstream
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The approximation of	the toroidal mirror to	the ellipsoid is
accurate only in	the center	of	the mirror.	

Rays far from it are	not properly focused.	

Toroidal aberration

Aberrations

Toroidal
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u"

v"

h"
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α"

β"

M"

A"

B"

Aberration computing

ℎ 𝑢, 𝑣 =
𝑢(

2𝑅 +
𝑣(

2𝑟

𝑂𝑃𝐷 𝑢, 𝑣 = 𝐌 − 𝐀 + 𝐁 −𝐌

Approximate	torus	equation

Optical	path	difference
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𝐀 −𝐌 = 𝐴= −𝑀=
( + 𝐴? − 𝑀?

( + 𝐴? − 𝑀?
(�

𝐹AB 𝑝, 𝑞, 𝛼, 𝛽, 𝑅F =
1

𝑛!𝑚!
𝜕AKB𝐹
𝜕𝑢A𝜕𝑣BL M,M|O,P,Q,R,ST

𝐹UV 𝑢, 𝑣|𝑝, 𝑞, 𝛼, 𝛽, 𝑟F = W W 𝐹AB 𝑝, 𝑞, 𝛼, 𝛽, 𝑟F 𝑢A𝑣B
X

BYM

X

AYM

Image condition
We need to compute the optical distance between object and mirror, and between mirror
and image.

It can be expressed as a Taylor series
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Main aberrations
• F20 meridional defocusing*

• F02 sagittal defocusing

• F30 primary coma*

• F12 astigmatic coma

𝐹(M =
cos( 𝛼
2

1
𝑝 +

1
𝑞 −

2
𝑅 cos 𝛼

𝐹M( =
1
2
1
𝑝 +

1
𝑞 −

2 cos 𝛼
𝑟

𝐹"( =
sin𝛼
2

1
𝑝 −

1
𝑞

1
𝑝 +

1
𝑞 −

cos 𝛼
𝑟

𝐹\M =
sin𝛼 cos( 𝛼

2
1
𝑝 −

1
𝑞

1
𝑝 +

1
𝑞 −

1
𝑅 cos 𝛼

F20 F30 Will appear again on the tutorial
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The basic equation for paraxial optics is the focus condition

rqp
acos211

=+

Varying the incidence angle
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dZ

dP

dzI

When one changes the pitch of a focusing mirror, one steers the beam, but also changes
the incidence angle (therefore the focusing).

Special cases. 1:1 magnifiction. Flat mirrors

Varying the incidence angle

For a fixed figure Two motors (pitch, z)
control four optical parameters (focus,
Beam angle, spot position, footprint
center / coma)
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Figure error: slope
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Figure error for coherent sources (a case)
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Just consider the case	in	which the mirror is perfect
almost everywhere except for a	step in	the center.

-slope error	is very small,	

- There is no	light	on axis due to		destructive
interference between the two sides of	the
wavefront

For diffraction limited imaging (FELs)	,	one
needs to	control	the wavefront distortion,	
which is given by the residual	height error.
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Figure error: height error

Δ𝑤 = 2Δℎ𝑐𝑜𝑠𝛼

Interference effects in	image formation are	given by the Strehl ratio	(actual	peak
intensity to	the error	free	peak intensity)	

Δ𝑤

Δℎ

𝑆 ≅ 1 −
2𝜋
𝜆 	Δ𝑤 f

ghi

(

	Δℎ f
ghi

≤ 𝜆	
1 − 𝑆�

4𝜋	𝑐𝑜𝑠𝛼
Example
LCLS	II – S	=	0.97	- 2.1	mrad -13	keVè 0.4	nm	rms
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designed for the resonant inelastic X-ray scattering (RIXS)
experiments at MAX IV require an aperture length of 280 mm
with 100 nrad r.m.s. slope error. In addition, elliptical-cylinder-
shaped focusing optics of 20 nrad r.m.s. residual slope devia-
tion up to a length of 1000 mm are proposed to focus photons
at the Single Particles, Clusters and Biomolecules (SPB)
experimental station at the European XFEL (Mancuso et al.,
2013). In contrast to such long focusing mirrors, the length of
Kirkpatrick–Baez (KB) mirror substrates at sources like
PETRA III or MAX IV will be in the range 100–200 mm
(Kalbfleisch et al., 2010; Johansson, 2014). Such optical
components of elliptical and hyperbolic shape are already
available today (Matsuyama et al., 2012; Siewert et al., 2012)
and allow diffraction-limited focusing of hard X-ray photons
within nanometre focus size (Mimura et al., 2010). All these
optical components used in tangential focusing have fairly
large radii of curvature. On the other hand, sagittal focusing,
which was proven to preserve brilliance very well, especially in
the soft X-ray regime, results in highly curved surfaces of
cylindrical, toroidal or ellipsoidal form setting new challenges
for manufacturing.

Dedicated metrology instrumentation of comparable accu-
racy has been developed to characterize such optical elements.
Second-generation slope-measuring profilers like the Nano-
meter Optical component measuring Machine (NOM)
(Siewert et al., 2004; Yashchuk et al., 2010; Nicolas & Martinez,
2013; Assoufid et al., 2013) allow the inspection of reflective
optics up to a length of 1.5 m (Alcock et al., 2010) with an
accuracy better than 50 nrad r.m.s. It has taken the place of the
well known Long Trace Profiler-II (LTP) (Takacs et al., 1987)
as a fundamental tool for the inspection of optics. It should be
noted that metrology does not only provide characterization
of optical components, but such data can be directly used in
realistic beamline modelling (Samoylova et al., 2009).

2. On the precision of optical elements to guide and
focus X-rays

Synchrotron optical components are long shaped (up to 1.3 m)
and used under the grazing-incidence condition (Wolter, 1952)

which makes them difficult to measure and thus to manu-
facture. The impact of shape imperfections at optical compo-
nents in the long spatial frequency error regime (from about
1 mm to aperture length) on the imaging performance of an
X-ray focusing system is related to the induced local phase
shifts in the reflected beam. The latter distort the wavefront
and cause the converging beam to have phase errors.
Assuming a small source and a large distance between source
and mirror, the acceptable p.v. mirror height variations !h are
limited to a few single nanometres only,

ð2!="Þ !hðxÞ
!! !! sin # # 1; ð1Þ

with # being the grazing angle and " the wavelength of the
X-ray beam (Samoylova et al., 2009). A further criterion for a
beamline performance is the r.m.s. wavefront distortion which
should be $r.m.s. < "/14 or better. This leads to a condition
known as the Maréchal criterion (Maréchal, 1947), where the
acceptable root-mean-square height error for a number of
optical components over all spatial frequencies present within
the residual surface errors is given by

!hrms $
"

14
ffiffiffiffi
N
p

2#
; ð2Þ

where N is the number of reflecting surfaces in the system
(Siewert et al., 2012). Clearly, the requirements on surface
quality become linearly more difficult to achieve with
decreasing X-ray wavelength, hence the difficult challenge of
making hard X-ray reflective optics of sufficient quality.
Practically, mirrors of sub-nm r.m.s. figure quality for the
long-, mid- and high-spatial figure error need to be manu-
factured and hence measured. These conditions have been the
motivation to improve deterministic finishing technology as
well as metrology capabilities. To demonstrate the current
state of metrology, we will discuss the inspection of a super-
polished focusing mirror pair for beamline P06 at PETRA III.
Finishing technology like ion beam figuring (IBF) (Schindler
et al., 2003; Thiess et al., 2010) and elastic emission machining
(EEM) (Yamauchi et al., 2002) allow the substrate topography
to be controlled on an atomic scale. Of course, this is only
realistic if precise topography data are available. Mirrors
finished by use of EEM have recently shown <1 nm r.m.s.
figure accuracy on a length of up to 350 mm (corresponding to
50 nrad r.m.s. slope deviation) (Siewert et al., 2012) and have
allowed diffraction-limited focusing at the CXI experiment at
LCLS (Boutet & Williams, 2010). However, upcoming optics
like the 1 m-long KB-focusing mirrors (Kirkpatrick & Baez,
1948) at the European XFEL with a required residual slope
error of 20 nrad r.m.s. (this corresponds to about 1 nm p.v.
figure error!) will represent a challenge for both metrology
and finishing technology. To reach such a quality, the grav-
itational sag and clamping forces need to be accounted for in
the mirror substrate so as to provide the required figure shape
when mounted at the beamline. In addition, diffraction-
limited sources translate into very high power densities on
optical components and additional care is required to preserve
the mirror shape as well as possible, even by means of active
optics. Whereas heat-load-induced deformations are very

new science opportunities

J. Synchrotron Rad. (2014). 21, 968–975 F. Siewert et al. % Characterization of ultra-precise X-ray optical components 969

Figure 1
Improvement of mirror quality in terms of slope error during the last two
decades (based on data and measurements performed at the BESSY-II
Optical Metrology Laboratory).

Some reference values of  figure error

Siewert et	al.	JSR	21,968-975	(2014)	

Quickly evolved in	the recent past:

• Development of	mirror metrology

• Deterministic polishing
techniques:

Most (usual)	companies can	deliver
mirrors better than 0.5	µrad	rms,	on
whatever figure	and	length.

For flats error	is sub-nanometer,	and		
slope error	below 100	nrad,	cost and	
delivery time.

Sagittal curvature always difficult
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Causes of figure error
• Fabrication error	(figuring,	

polishing metrology)	:	well
below 0.5	µrad	rms

• Gravity sag.

• Clamping mechanics.

• Stress	induced by cooling
scheme.

• Thermal deformations.

• Bender	errors,	ellipse
approximatino errors

• Coating stress!	Bakeout
developed stresses (?)

mirror

Cooling pads

Cooling tube supports

mirror

Cooling pads

Cooling tube supports

Mirror	alone:		R	=	331.039	m /	0.163	μrad RMS
In	holder:									R	=	338.303	m /	0.533	μrad RMS
(First	iteration)
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Misalignments
No	error

Error	∆q	=	0.5% Pitch	error	50µrad Yaw error	50µrad

6	m
1	m

Point	source
Ellipsoid	at	3	deg
100x10	mm2

FOV	is 100	µm
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By decoupling vertical	and	horizontal	focusing,	one can	obtain aberration free	focusing by
using high quality mirrors polished flat,	with low slope error,	and	mechanically bent onto
plano-elliptic figure.

Focused beam 

50μm

10
	μ
m

Kirkpatrick-Baez configuration
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• Decouple horizontal	and	vertical	planes

• Astigmatic sources or images

• No	sagittal curvature

• Allow different stripes

• More	accurate metrology

• Relaxes alignment requirements (no	sagittal curv.)

• If bender

• Start from flat	or spherical mirrors

• Adaptive focus and	primary comma

• Several foci

• Focus independent of	alignment

Some KB advantages
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2. Characteristics of elliptic mirrors
§ Geometry	of	the	ellipse.
§ Height,	slope,	curvature.
§ Polynomial	approximation.
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𝑎 =
𝑝 + 𝑞
2

Description of an elliptic mirror

Major	semi-axis

𝑐 =
1
2 𝑝( + 𝑞( − 2𝑝𝑞 cos2𝛼�

Half	distance	between	foci	
(linear	eccentricity)

𝑒 = 1 −
2

𝑝 + 𝑞 𝑝𝑞 cos( 𝛼
�

eccentricityMinor	semi-axis

𝑏 = 𝑝𝑞� cos𝛼

p	
q	

A	

A’	

x	

y	

α	

c	

a	

b	 ψ	

tan𝜓 =
𝑞 − 𝑝
𝑞 + 𝑝 cot𝛼

Orientation
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Equations of the ellipse

α	
p	

q	

A	(-psinα,pcosα)	

m	

A’	(qsinα,qcosα)	

x	

y	

𝐫t − 𝐫B + 𝐫tu − 𝐫B = 𝑝 + 𝑞

𝑥 + 𝑝	sinα ( + 𝑦 − 𝑝	cosα (� + 𝑥 − 𝑞	sinα ( + 𝑦 − 𝑞	cosα (� = 𝑝 + 𝑞

Vector	equation	of	the	ellipse	

Implicit	equation	of	the	ellipse		(as	a	function	of	coordinates)
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Explicit equations of the ellipse

𝑦 𝑥 = −
𝑥 𝑝( − 𝑞( sin 2𝛼 − 4 𝑝 + 𝑞 cos𝛼 𝑝𝑞 − 𝑝𝑞� 𝑝𝑞 − 𝑥 𝑝 − 𝑞 sin 𝛼 − 𝑥(�

𝑝( + 6𝑝𝑞 + 𝑞( − 𝑝 − 𝑞 ( cos2𝛼

Concave	branch	of	the	explicit	solution	of	the	ellipse	

• Note	that	y(0)=0
• This	is	an	exact solution!	

𝑑𝑦
𝑑𝑥 𝑥 = −

2 𝑝 + 𝑞 cos𝛼 𝑝 − 𝑞 sin 𝛼 −
𝑝𝑞� 𝑝 − 𝑞 sin 𝛼 + 2𝑥
𝑝𝑞 − 𝑥 𝑝 − 𝑞 sin 𝛼 − 𝑥(�

𝑝( + 6𝑝𝑞 + 𝑞( − 𝑝 − 𝑞 ( cos2𝛼

Slope	function	of	the	ellipse

• Note	that	y’(0)=0
• This	is	an	exact solution!	
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Curvature and imaging condition
Curvature	of	the	ellipse

• Note	that	it	is	not	constant

1
𝑅 𝑥 =

𝑑(𝑦
𝑑𝑥( 𝑥 =

𝑝𝑞� (𝑝 + 𝑞) cos𝛼
2 𝑝𝑞 − 𝑥 𝑝 − 𝑞 sin 𝛼 − 𝑥( \ (⁄

1
𝑅M

=
~𝑝 + 𝑞) cos𝛼

2𝑝𝑞

Curvature	at	the	center	of	the	ellipse

2
𝑅M cos𝛼

=
1
𝑝 +

1
𝑞

• It	is	the	focusing	condition	(mer)	
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Taylor expansion of the ellipse
Definition

with

In	the	case	of	an	ellipse,	the	coefficients	are	functions	of	p,q and	α

𝑦 𝑥 = W𝐸A𝑥A
X

�YM

𝐸A = 	
1
𝑛!
𝑑A𝑦
𝑑𝑥A�=YM

𝐸( =
cos𝛼
4

1
𝑝 +

1
𝑞 =

1
2𝑅M

𝐸\ =
sin 2𝛼
16

1
𝑞( −

1
𝑝(

𝐸� =
E\(

4E(
5 − csc( 𝛼 + E(\ sec( 𝛼 𝐸� =

E\\(7 − 3 csc( 𝛼)
4E((

+ 3E((E\ sec( 𝛼

𝐸� =
E\�(21 − 14csc( 𝛼 + csc� 𝛼)

8E(\
+ E(E\((7 − csc( 𝛼) sec( 𝛼 + 2E(� sec� 𝛼
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Aberrations, revisited

𝐸\ =
sin 2𝛼
16

1
𝑞( −

1
𝑝(

𝐹(M =
cos( 𝛼
2

1
𝑝 +

1
𝑞 −

2
𝑅 cos 𝛼

𝐹\M =
sin 𝛼 cos( 𝛼

2
1
𝑝 −

1
𝑞

1
𝑝 +

1
𝑞 −

1
𝑅 cos𝛼

𝐸( =
cos𝛼
4

1
𝑝 +

1
𝑞

𝐹(M = 2cos𝛼
cos𝛼
4

1
𝑝 +

1
𝑞 −

1
2𝑅

𝐹\M = −2cos𝛼
sin 2𝛼
16

1
𝑞( −

1
𝑝(

Remember:

Defocus	is	given	by	the	quadratic	term	of	the	ellipse	polynomial	

If	F20=0
Primary	coma	is	given	by	the	cubic	term	of	the	ellipse	polynomial

𝐹(M = 2cos𝛼 Δ𝐸(

Remember: 𝐹\M = −2cos𝛼 Δ𝐸\
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3. Mirror bender calculations and metrology

§ Euler-Bernoulli	equation
§ Rectangular	footprint	case
§ Custom	footprint	case
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Elastic beam theory
Euler-Bernoulli	equation

Second	moment	of	inertia

• z(x)	is	the	deformation	induced	by	the	load.	[m]

• M(x)	is	the	distribution	of	bending	moments	along	the	mirror

• E	is	the	Young’s	modulus	of	the	body.[N/m2]

• I(x)	is	the	second	moment	of	inertia	of	the	mirror	substrate	section.	[m4]

𝐼 𝑥 = � 𝑧(𝑑𝑥𝑑𝑧
����F�A

𝐼?? =
𝑏ℎ\

12

For	a	rectangular	section

𝐸 · 𝐼 𝑥
𝑑(

𝑑𝑥( 𝑧 𝑥 = 𝑀 𝑥 𝑀 𝑥 = W 𝑥 − 𝑥F 𝐹F

�

F|=T�=

Bending	moments

𝑏ℎ
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Integration (rectangular mirror footprint)

𝑧 𝑥 = 𝑐� + 𝑐"𝑥 + � �
𝑀 𝑥′
𝐸	𝐼 𝑥′ 𝑑𝑥′

="

�� (⁄
𝑑𝑥"

=

�� (⁄ 𝑧 𝑥 = 𝑐� + 𝑐"𝑥 + 𝐸(𝑥( + 𝐸\𝑥\

General	Solution to	Euler-Bernoulli’	equation For constant section mirror the solution
is a	third degree polynomial

𝑀 𝑥
𝑥

𝐸( =
3𝑎
𝐸𝑏ℎ\ 𝐹� + 𝐹�

𝐸\ =
2𝑎

𝐸𝑏ℎ\𝐿 𝐹� − 𝐹�

𝐹�
𝐹�

𝑎 𝐿 − 𝑎 𝐿
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𝐸( =
3𝑎
𝐸𝑏ℎ\ 𝐹� + 𝐹�

𝐸\ =
2𝑎

𝐸𝑏ℎ\𝐿 𝐹� − 𝐹�

Rectangular mirror footprint
• The sum	of	forces controls the main curvature (and	the

defocusing)

• The difference between the forces controls the
eccentricity (and	primary coma)

120100

Eccentricity (E3) [m-2]

806050

10-6

-4
-3

3
2
1
0

-1
-2

100

Force 
Downstream [N]

120

Force 
Upstream [N]

100

Curvature (E2) [km-1]

806050

0.026
0.024
0.022

0.02
0.018
0.016
0.014

100

Force 
Downstream [N] Force 

Upstream [N]

𝐸(
𝐸\

=
𝐸(,���
𝐸\,� �

+ 𝐸(� 𝐸(�
𝐸\� 𝐸\�

𝐹�
𝐹�

Measurement No
1 2 3 4 5 6

Fi
t E

rro
r [

ra
d 

rm
s]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

FU=50.1 N
FD=50.0 N FU=100.0 N

FD=49.9 N FU=99.9 N
FD=100.0 N

FU=50.1 N
FD=99.8 N

FU=120.3 N
FD=99.7 N

FU=60.3 N
FD=80.3 N

Accuracy of the linear fit
E2
E3

fit	better	than	about	50	nrad rms
(metrology	limited	– too	quick)
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High demagnification ellipses
The	error	of	the	cubic	polynomial	approximation	is	given	by:	

𝑦¡¢¢£¢ 𝑥 =

−
𝑥 𝑝( − 𝑞( sin 2𝛼 − 4 𝑝 + 𝑞 cos𝛼 𝑝𝑞 − 𝑝𝑞� 𝑝𝑞 − 𝑥 𝑝 − 𝑞 sin 𝛼 − 𝑥(�

𝑝( + 6𝑝𝑞 + 𝑞( − 𝑝 − 𝑞 ( cos2𝛼 −
cos𝛼
4

1
𝑝 +

1
𝑞 𝑥( −

sin 2𝛼
16

1
𝑞( −

1
𝑝( 𝑥\

Position [mm]
-200 -150 -100 -50 0 50 100 150
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gh
t E
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nm
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-100

0

100

200

300

400
FU=7 N, FD=269 N,Error:6.267 μ rad

For ALBA’s LOREA	beamline HFM	
10:1,	400	mm	long,	this error	is in	
the order of	6.3	urad rms

𝑦¡¢¢£¢ 𝑥 = 	𝑦¡¤U*¥ 𝑥 − 𝐸(𝑥( − 𝐸\𝑥\

For	high	demagnification	ellipses,	higher	order	aberrations	are	significant
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Varied width mirrors

By	inserting	the	exact	curvature	profile,	we	have	the	definition	of	the	required	mirror	width.

𝐸𝑏 𝑥 ℎ\

12
𝑑(𝑦
𝑑𝑥( 𝑥 = 𝑀M + Δ𝑀

2𝑥
𝐿

𝐸𝑏 𝑥 ℎ\

12
𝑝𝑞� (𝑝 + 𝑞) cos𝛼

2 𝑝𝑞 − 𝑥 𝑝 − 𝑞 sin 𝛼 − 𝑥( \ (⁄ = 𝑀M + Δ𝑀
2𝑥
𝐿

𝑏 𝑥 = 𝑏M
1
𝑏M
𝑀M +

1
𝑏M
Δ𝑀

2𝑥
𝐿

24 𝑝𝑞 − 𝑥 𝑝 − 𝑞 sin 𝛼 − 𝑥( \ (⁄

𝐸ℎ\ 𝑝𝑞� (𝑝 + 𝑞) cos𝛼

Deformation	equation	includes	curvature:

The	solution	depends	on	the	forces	one	can	apply.

Often	b(x)	is	just	approximated	by	a	low	order	polynomial	variation	

𝑀M =
1
2 𝑎"𝐹" + 𝑎(𝐹(

Δ𝑀 =
1
2 𝑎"𝐹" − 𝑎(𝐹(
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Examples of varied profile mirrors

-200 0 200

-20

0

20

-200 0 200

-20

0

20

-200 0 200

-20

0

20

-200 0 200

-20

0

20

Mirror	width	profile	for	a	10:1	demagnification	mirror,	for	different	bending	
moment	combinations.



J.	Nicolas MEDSI’16

Model of deformation

𝐸𝑏 𝑥 ℎ\

12
𝑑(𝑦
𝑑𝑥( 𝑥 = 𝑀M + Δ𝑀

2𝑥
𝐿

Deformation	of	the	mirror,	in	this	case,	is	NOT	a	polynomial.

𝐸𝑏 𝑥 ℎ\

12
𝑑(𝑦
𝑑𝑥( 𝑥 = 𝑎

𝑥
𝐿 −

1
2 𝐹� − 𝑎

𝑥
𝐿 +

1
2 𝐹�

𝐸𝑏 𝑥 ℎ\

12𝑎
𝑑(𝑦�
𝑑𝑥( 𝑥 =

𝑥
𝐿 −

1
2 	

𝐸𝑏 𝑥 ℎ\

12𝑎
𝑑(𝑦�
𝑑𝑥( 𝑥 = −

𝑎𝑥
𝐿 −

1
2 	

𝑦 𝑥 = 𝐹�𝑦� 𝑥 + 𝐹�𝑦� 𝑥

Position [mm]
-150 -100 -50 0 50 100 150

H
ei

gh
t E

rro
r [

nm
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20
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hU(x)
hD(x)

…	but	it	is	still	a	linear	combination	of	two	functions.
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Position [mm]
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Residual Error
#1: 0.330 urad
#2: 0.385 urad
#3: 0.401 urad
#4: 0.378 urad
#5: 0.377 urad
#6: 0.341 urad

Metrology of varied width mirror benders

Measurement No
1 2 3 4 5

Fi
t E

rro
r [

N
 rm

s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

FU=50.1 N
FD=50.1 N

FU=50.4 N
FD=249.6 N

FU=50.4 N
FD=399.3 N

FU=199.8 N
FD=400.7 N

FU=201.0 N
FD=250.0 NAccuracy of the linear fit

FU
FD

After	fitting	data	to	the	proposed	base	of	functions,	residual	
figure	(polishing	error)	is	equal	for	all	bending	positions
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4. Mechanical design of mirror benders
§ Functionalities	of	bender
§ Parasitic	forces
§ Cyl benders,	U-type,	4-point,	scissor,	

bimorph,	…



J.	Nicolas MEDSI’16

A zoo of mechanical solutions

(b)  cantilever spring bender

(a)  “s” spring bender

Mechanical design approaches

M. R. Howells, et al., Theory and practice of elliptically bent  x-ray mirrors, Opt. Eng.39(10), 2748-61 (2000)

Beam theory applied to a bent structure:

x
L

CCCC

x

y
xEI 2121

2

2

2
)(

!
!

+
=

"

"

E  is Young’s modulus of the mirror material

I(x) is the moment of inertia as a function of

position along the beam, or mirror

C
1  

and  C2
  are the end couples producing

bending moments

12
)(

3

0

hb
IxI ==

bird-like shape
anti-clastic bending
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KB development at ESRF
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Different configurations: 
¾ Single bender (13)
¾ KB 170-170 (8)
¾ KB 170-96 (8)
¾ KB 170-300 (3)
¾ KB 300-300 (5)

Since 2001: 61 benders tested and pre-shaped at the metrology lab
22 with multilayer coatings

ID23 5 x 7 µm
ID27 2 x 4 µm
ID13 0.3 x 0.4 µm
ID22 76 x 84 nm
ID19 45 nm in Vertical

Graded multilayer *
96 mm 170 mm

300 mm

Spot size

* O.Hignette

 

et al., AIP Conf Proc.-

 

January 19, 2007 -

 

Volume 879, pp. 792-795 

Spot size achieved is generally close to geometrical limit (i.e.

 

not limited by optics aberrations)

Slide: 5
ACTOP08, Trieste 10 October 2008A. Rommeveaux

LTP characterization of Long mirror benders

1.

 

Mirror intrinsic slope error characterization (out of bender)
2.

 

Mirror clamped on mechanics: 
•

 

Evaluation of deformation induced by mechanics and correction if

 

possible
•

 

Adjustment, optimization of gravity compensators
•

 

Verifying safety switches, range of curvature 
3.

 

Hysteresis cycles
4.

 

Long term stability

Anti-twist Correction

Twist Simulation

before twist correction

after twist correction

Anti-twist mechanisms

Anti-twist correction

should not stress the

mirror  substrate

in other directions

Visualization and correction  of

surface twist with ZYGO GPITM

with virtual pivot

A – stabilizing bracket

Cylindrical bender ESRF-Scissor bender

S-spring bender

Canti-lever bender

Four-point bender

SLAC HiRes
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Functionalities of a bender

1. To introduce the forces that deform the
mirror to the required ellipse within
tolerances.

2. To minimize parasitic forces that
introduce undesired deformations

3. To introduce forces that deform the
mirror to compensate gravity sag or
other errors

Mechanical design of benders
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Functionalities of a bender

1. To introduce the forces that deform the
mirror to the required ellipse within
tolerances.

2. To minimize parasitic forces that
introduce undesired deformations

3. To introduce forces that deform the
mirror to compensate gravity sag or
other errors

Mechanical design of benders

• Fix	the	application	point	and	
direction

• Demagnify motor	
displacements	to	nanometer	
resolution	deformation
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Apply controlled forces

• Fix	the	application	point	and	
direction

• Demagnify motor	
displacements	to	nanometer	
resolution	deformation

Flexure	hinges	point	to	the	
“rotation”	point.
Mirror	is	glued	(monolithic)

Lever	(+bending	?)	demagnifies
motor	linear	motion	to	an	angle	
constraint	on	the	mirror	ends.
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• Fix	the	application	point	and	
direction

• Demagnify motor	
displacements	to	nanometer	
resolution	deformation

Pivot	in	center	of	contact	
surface	ensures	force	is	
normal	to	the	surface,	and	
fixes	application	point

(Not	visible)	Force	is	exerted	by	a	
hellicoidal spring	in	compression

Apply controlled forces
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• Fix	the	application	point	and	
direction

• Demagnify motor	
displacements	to	nanometer	
resolution	deformation

Demagnification	of	motor	
displacement	by	elastic	
bending	of	the	cantilever

Anti-twist Correction

Twist Simulation

before twist correction

after twist correction

Anti-twist mechanisms

Anti-twist correction

should not stress the

mirror  substrate

in other directions

Visualization and correction  of

surface twist with ZYGO GPITM

with virtual pivot

A – stabilizing bracket

Apply controlled forces
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• Fix	the	application	point	and	
direction

• Demagnify motor	
displacements	to	nanometer	
resolution	deformation

Demagnification	of	
motor	displacement	by	
a	rigid	long	lever	arm

Slide: 9
ACTOP08, Trieste 10 October 2008A. Rommeveaux

KB development at ESRF
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Different configurations: 
¾ Single bender (13)
¾ KB 170-170 (8)
¾ KB 170-96 (8)
¾ KB 170-300 (3)
¾ KB 300-300 (5)

Since 2001: 61 benders tested and pre-shaped at the metrology lab
22 with multilayer coatings

ID23 5 x 7 µm
ID27 2 x 4 µm
ID13 0.3 x 0.4 µm
ID22 76 x 84 nm
ID19 45 nm in Vertical

Graded multilayer *
96 mm 170 mm

300 mm

Spot size

* O.Hignette

 

et al., AIP Conf Proc.-

 

January 19, 2007 -

 

Volume 879, pp. 792-795 

Spot size achieved is generally close to geometrical limit (i.e.

 

not limited by optics aberrations)

Apply controlled forces
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Functionalities of a bender

1. To introduce the forces that deform the
mirror to the required ellipse within
tolerances.

2. To minimize parasitic forces that
introduce undesired deformations

3. To introduce forces that deform the
mirror to compensate gravity sag or
other errors

Mechanical design of benders

• Avoid	twist
• Avoid	forces	along	longitudinal	

axis
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Control parasitic forces

• Avoid	twist
• Avoid	forces	along	longitudinal	

axis

Anti-twist Correction

Twist Simulation

before twist correction

after twist correction

Anti-twist mechanisms

Anti-twist correction

should not stress the

mirror  substrate

in other directions

Visualization and correction  of

surface twist with ZYGO GPITM

with virtual pivot

A – stabilizing bracket

Virtual	pivot	to	manually	adjust	
the	twist	of	one	end	of	the	mirror	
during	metrology	tests
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Torsion (twist) adjustment

Anti-twist Correction

Twist Simulation

before twist correction

after twist correction

Anti-twist mechanisms

Anti-twist correction

should not stress the

mirror  substrate

in other directions

Visualization and correction  of

surface twist with ZYGO GPITM

with virtual pivot

A – stabilizing bracket

There	are	benders	which	are	torsion	free,	and	others	which	allow	correcting	it
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• Avoid	twist
• Avoid	forces	along	longitudinal	

axis

Rolled	articulation	(on	one	side	
only)	to	allow	the	mirror	settle	its	
twist	freely.

Bending	force	actuators	allow	
pitch	and	roll	to	avoid	
introducing	undesired	
deformations

Control parasitic forces



J.	Nicolas MEDSI’16

Functionalities of a bender

1. To introduce the forces that deform the
mirror to the required ellipse within
tolerances.

2. To minimize parasitic forces that
introduce undesired deformations

3. To introduce forces that deform the
mirror to compensate gravity sag or
other errors

Mechanical design of benders

• Gravity	sag	compensation
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Gravity sag compensation

• Gravity	sag	compensation

Manually	adjustable	
springs,	for	gravity	
sag	compensation
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Functionalities of a bender

1. To introduce the forces that deform the
mirror to the required ellipse within
tolerances.

2. To minimize parasitic forces that
introduce undesired deformations

3. To introduce forces that deform the
mirror to compensate gravity sag or
other errors

Adaptive optics

• Gravity	sag	compensation
• Adaptive	optics

Piezo	– electric	corrctors
embedded	in	the	mirror	bulk

Piezo	Ceramics	

Silicon

Silicon

HV	electrodes
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• Gravity	sag	compensation
• Adaptive	optics

Nanometer	resolution	–stiff-
pushing/pulling	motors

Adaptive optics
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• Gravity	sag	compensation
• Adaptive	optics

Force-stabilized	– motorized	
correctors.	

Adaptive optics
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Slope	Error: 0.115	μrad	rms
Surface	Error:		0.858	nm	rms

Using 4	actuators,	500	mm

Initial	slope	error	 0.87	μrad	rms
Initial	surface	Error:		23.2	nm	rms

Difference to	model-base	
optimum of	0.08	nm

Adaptive optics
Results of the ALBA-SENER nanobender
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Position [mm]
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R=2.94km
R=3.56km
R=3.98km

The correction is preserved within the nanometer with variations of	the
radius of	curvature of	35%	.

Adaptive optics
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Backup slides – gravity sag correction
§ Rectangular	footprint	case
§ Custom	footprint	case
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Gravity sag calculation

F1	 F2	

-ρLbhg	

z	

y	
a1	

a2	

L	

1. Equilibrium	of	forces	and	torques:	to	determine	all	the	forces.
2. Function	of	momenta:	to	determine	the	RHS	of	the	E-B	equation.
3. Integration.
4. Boundary	conditions:	to	determine	the	integration	constants.
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Equilibrium of forces

¦
	𝐹" + 𝐹( − 𝑔𝜌𝐿𝑏ℎ = 0

	𝑎"𝐹" + 𝑎(𝐹( −
𝑔𝜌𝐿(𝑏ℎ

2 = 0

F1	 F2	

-ρLbhg	

z	

y	
a1	

a2	

L	

𝐹" = 𝑔𝑚
𝑎( − 𝐿 2⁄
𝑎( − 𝑎"

𝐹( = 𝑔𝑚
𝐿 2⁄ − 𝑎"
𝑎( − 𝑎"

• All	forces	and	torques	must	add	to	zero,	otherwise	the	mirror	would	be	accelerating	
linearly	or	angularly.

• Torques	are	calculated	from	the	origin	of	coordinates	(not	the	center	of	the	mirror)
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Function of moments

Region	I.	(only	weight)

𝐹ª 𝑥 = −𝑔𝜌𝑏ℎ𝑥

𝑎ª 𝑥 =
𝑥
2

𝑀� 𝑥 = 𝐹ª 𝑥 𝑥 − 𝑎ª 𝑥

= −
1
2𝑔𝜌𝑏ℎ𝑥

(
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Function of moments

Region	I.	(only	weight)

𝐹ª 𝑥 = −𝑔𝜌𝑏ℎ𝑥

𝑎ª 𝑥 =
𝑥
2
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𝑀��� 𝑥

= −
1
2𝑔𝜌𝑏ℎ𝑥

(

+ 𝐹" 𝑥 − 𝑎"
+ 𝐹( 𝑥 − 𝑎(

Function of moments

Region	II.	(weight,	F1)

Region	III.	(weight,	F1,	F2)

𝑀�� 𝑥

= −
1
2𝑔𝜌𝑏ℎ𝑥

(

+ 𝐹" 𝑥 − 𝑎"
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Integration (1)
• Each	region	has	to	be	integrated	separately,	because	the	function	is	not	

continuous.	
• In	all	the	cases	the	function	of	momenta	is	a	polynomial	of	order	2.	Which	when	

integrated	twice	becomes	a	polynomial	of	order	four.

𝑧« 𝑥 = 𝑧M + 𝑧"𝑥 + 𝑧(𝑥( + 𝑧\𝑥\ + 𝑧�𝑥�

𝑑𝑧«
𝑑𝑥 𝑥 = 𝑧" + 2𝑧(𝑥 + 3𝑧\𝑥( + 4𝑧�𝑥\

𝑑(𝑧«
𝑑𝑥( 𝑥 = 2𝑧( + 6𝑧\𝑥 + 12𝑧�𝑥(

𝑘 =
𝐸𝑏ℎ\

12
𝐸𝑏ℎ\

12
𝑑(𝑧«
𝑑𝑥( 𝑥 = 2𝑘𝑧( + 6𝑘𝑧\𝑥 + 12𝑘𝑧�𝑥(

By	defining	: We	have:
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𝐴( = 0
𝐴\ = 0

𝐴� = −
𝑔𝜌𝑏ℎ
24𝑘

𝑀�(𝑥) = −
1
2𝑔𝜌𝑏ℎ𝑥

(

𝐴M, 𝐴"

Region	I.

Implies

2𝑘𝑧( + 6𝑘𝑧\𝑥 + 12𝑘𝑧�𝑥( = 𝑀 𝑥

Integration (2)

Unknown

𝑀��(𝑥)
= −𝑎"𝐹" + 𝐹"𝑥

−
1
2𝑏𝑔ℎ𝑥

(𝜌

𝐵( = −
𝑎"𝐹"
2𝑘

𝐵\ =
𝐹"
6𝑘

𝐵� = −
𝑏𝑔ℎ𝜌
24𝑘

Region	II.

𝐵M, 𝐵"

𝑧® → 𝐴F, 𝐵F, 𝐶F

Region	III.

𝑀��� 𝑥
= −𝑎"𝐹" − 𝑎(𝐹( + (𝐹"
+ 𝐹()𝑥 −

1
2𝑏𝑔ℎ𝑥

(𝜌

𝐶( = −
𝑎"𝐹" + 𝑎(𝐹(

2𝑘

𝐶\ =
𝐹" + 𝐹(
6𝑘

𝐶� = −
𝑏𝑔ℎ𝜌
24𝑘

𝐶M, 𝐶"

Implies Implies

Unknown Unknown

Notation	change	!!!
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Boundary conditions
1.	Continuity	between	regions	+ at	
tbese points	deformation	is	zero

𝑧� 𝑎" = 0
𝑧�� 𝑎" = 0
𝑧�� 𝑎( = 0
𝑧��� 𝑎( = 0

𝑧� 𝑎" = 𝑧��(𝑎")
𝑧�� 𝑎( = 𝑧���(𝑎()

2.	Derivability	(continuity	of	1st
derivative)	between	regions

The	system	is	linear	on	A0,	A1,	B0,	B1,	C0,	C1,	and	can	be	solved	with	unique	solution	
(using	Mathematica).	

è See	Mathematica	Notebook:	GravitySagCalculation.nb
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Example of gravity sag correction
A	mirror	measured	with	supports	at	the	Bessel	points	and	at	the	ends.	Gravity	sag	is	
removed	in	both	cases.	
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Gravity sag of arbitrary profile mirror

𝐸𝑏 𝑥 ℎ\

12
𝑑(𝑧«
𝑑𝑥( 𝑥 = 𝑀« 𝑥 +𝑀" 𝑥 +𝑀( 𝑥

The	width	of	the	mirror	is	not	constant	

MG:	gravity,	M1:	support	1,	M2:	support	2

Calculating	MG

• Mass	at	the	left	of	x:

• Mass	center:	

M1,	M2	

𝑚� 𝑥 = 𝜌ℎ � 𝑏 𝑥u 𝑑𝑥u
=

�±/(

𝑥� 𝑥 = � 𝑥′𝑏 𝑥u 𝑑𝑥u
=

�� (⁄
� 𝑏 𝑥u 𝑑𝑥u
=

�� (⁄
³

𝑀F 𝑥 = 𝑥 − 𝑥F 𝐹F𝜃 𝑥 − 𝑥F

𝜃 𝑥 Heavyside Step	function

𝐼M 𝑥

𝐼" 𝑥
𝐼M 𝑥
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Gravity sag of arbitrary profile mirror

𝑑(𝑧«
𝑑𝑥( 𝑥 = 12

𝑀« 𝑥 +𝑀" 𝑥 +𝑀( 𝑥 	
𝐸𝑏 𝑥 ℎ\

• The	width	of	the	mirror	is	not	constant.	

• The	equation	is	no-longer	the	integral	of	a	polynomial.

• It	can	be	integrated	numerically.

• All	the	functions	of	x	become	vectors	(linear	arrays)

MG:	gravity,	M1:	support	1,	M2:	support	2

𝑓 𝑥 → 𝑓 𝑥A → 𝑓 𝑛Δ𝑥 → 𝑓A
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Calculating	MG(x)

• Mass	at	the	left	of	x:

• Mass	center:	

𝑚� 𝑥 = 𝜌ℎ � 𝑏 𝑥u 𝑑𝑥u
=

�±/(

𝑥� 𝑥 = � 𝑥′𝑏 𝑥u 𝑑𝑥u
=

�� (⁄
� 𝑏 𝑥u 𝑑𝑥u
=

�� (⁄
³

These	become	numerical	integrals
If	you	like	you	can	apply	
more	sophisticated	
integration	methods,	
Simpson’s	rule,	Spline,…

Moment of inertia of the weight

𝑀« 𝑥 = −𝑔𝑚� 𝑥 𝑥 − 𝑥� 𝑥 𝑀« A = −𝑔 𝑚� A 𝑥A − 𝑥� A

𝑚� A = 𝜌ℎΔ𝑥 W 𝑏B

A

BY"
𝑥� A = W 𝑥B𝑏B

A

BY"

W 𝑏B

A

BY"

µ

And	the	final	expression	of	MG(x)	is	also	a	vector
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Moments of inertia of the supports
Calculating	M1(x),	M2(x)

• Need	to	know	the	actual	values	of	F1 and	F2 (not	just	its	expression	as	a	function	
of	mirror	dimensions).

• They	can	be	written	in	close	expression	using	the	Heaviside	function	step	function

𝐹" = 𝑔𝑚M
𝑥( − 𝑥M
𝑥( − 𝑥"

𝐹( = 𝑔𝑚M
−𝑥" + 𝑥M
𝑥( − 𝑥"

m0:	total	mass
x0:	mass	center	of	the	mirror

𝑀F 𝑥 = 𝑥 − 𝑥F 𝐹F𝜃 𝑥 − 𝑥F

𝑀F A = 𝑥A − 𝑥F 𝐹F𝜃 𝑥A − 𝑥F
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Integration
• Once	all	the	functions	of	x	are	evaluated,	they	can	be	numerically	integrated

• Note	that,	since	we	use	close	expressions,	there	are	no	boundary	conditions	
between	zones.

• Which	becomes	

• Average	height	and	average	pitch	are	undetermined.	Often,	these	are	simply	
set	to	average	zero	as	they	do	not	carry	information	about	the	mirror	figure,	
but	about	its	position.

𝑧 𝑥 = 𝑐� + 𝑐"𝑥 + � � 12
𝑀« 𝑥′ + 𝑀" 𝑥′ + 𝑀( 𝑥′

𝐸ℎ\𝑏 𝑥′ 𝑑𝑥′
="

�� (⁄
𝑑𝑥"

=

�� (⁄

𝑧A = 𝑐� + 𝑐"𝑥A +
12
𝐸ℎ\ W W

𝑀« O + 𝑀" O + 𝑀( O

𝑏O

B

OY"

A

BY"


