Recent Progress on the Design of High Heat Load Components

Sushil Sharma NSLS-II / BNL

Acknowledgment

Co-authors: C. Amundsen, F. DePaola, F. Lincoln, J. Tuozzolo

Discussions: I.C. Sheng (TPS), P. Marion (ESRF), L. Volpe (SIRIUS)

S. Sharma

NSLS-II

Outline

- Introduction Brief outline of the new design concept
- Components of BM/3-PW Frontends at NSLS-II
- ID FE and Beamline Components
 - FE Photon shutters and slits
 - FE Mask problem and solutions
 - Beamline masks
- SR absorbers
- Conclusions

Main Features of the New Design

- 1. Integral Conflat Flanges:
 - Single piece construction
 - No brazing (or welding)

Copper alloy, CuCrZr, is easy to weld → more design options

Copper Alloys Selection → CuCrZr and GlidCop

Be window diffusion brazed to Glidcop flange

CuCrZr mask with separate flanges to be welded

New Design Features (contd.)

3. Beam Interception – only vertically

- Common designs vertical beam size is usually the same.
- Multiple apertures are easily made.
- Parts can be made in advance.

4. Internal fins:

- Thermal efficiency
- Trapping of scattered beam

A mask with 3 apertures

NSLS-II HEX Superconducting Wiggler Horizontal Fan Size

BM/3-PW Frontends at NSLS-II

NSLS-II BM Frontend

 Three BM/3-PW frontends were installed at NSLS-II in May 2016. All copper components were made from CuCrZr flanges (except for diffusion-brazed Be windows)

Fixed Mask and Slits (with BPMs)

XFP Mirror and a Fixed Mask

BM/3-PW Frontend Components

Water-cooled slit

Be Window

- 24 components of integral-flange design were built and installed. Another ~ 25 are in construction.
- None of the components developed vacuum leak or required re-torquing.
- During initial vacuum processing of the components, a few components developed leaks due to burrs on the knife edged. The design of the knife edge was modified. (F. DePaola et al., MEDSI 2016)

BROOKHAVEN SCIENCE ASSOCIATES

ID Photon Shutters and Slits

CuCrZr can be easily welded by GTAW or e-Beam welding →

- Machining can be reduced by making the flanges separately.
- New designs are very similar to the existing designs except that no brazing is required.

Existing Design

New Design

Slit

Office of

Science

New Mask Design

Fixed Mask Body

Upstream End

- The beam is intercepted by top and bottom surfaces consisting of sine-wave fins.
- At the downstream end, the EDM wire leaves a gap of ~ 0.5 mm with an optimum wire size of 0.3 mm.
- More than 1 kW of beam power can escape through this gap and can melt even water-cooled copper at normal incidence.
- Closing this wire gap became a very challenging problem. It could not be closed even with a large force (~ 100,000 kgf)

Downstream End

ID Mask Prototype – Option 1

Prototype

- The downstream flange acts as a beam stop. For an ID beam of 100 kW/mrad² an 8° inclined surface is required.
- The flange is welded to the main body after sine-wave surfaces are created.
- After welding, the nominal aperture is machined both in the main body and the flange.

Upstream End

Downstream End

Upstream Weld

Downstream Weld

FE Analysis – Flange Beam Stop

FE Model – Beam footprint from a Sine Wave Gap

- The beam footprint is extended in the vertical direction because of 8° angle.
- In the footprint of the beam has a Gaussian power distribution.
- A sine wave gap leads to a ~50% lower temperature rise than a horizontal gap.

Max. Temp. (Sine Wave Gap) = 312° C

Max. Temp. (Horiz. Gap): 486 °C

Fixed Mask – Option 2

- The side walls are hollowed out by wire EDM at the same time as when the sine wave surfaces are created.
- A force is applied to close the gap on the downstream end. The downstream flange is then inserted and welded.

Applied load = 2,200 kG Max. von-Mises Stress = 336 MPa (Yield stress = 350 MPa) Maximum bulge = 0.5 mm

Fixed Mask – Option 3

Split Mask

- This option is based on easy weldability of CuCrZr.
- The split mask is made in top-half and bottom-half.
- The two halves are then welded on the sides and then to the flanges
 - ➤ No EDM wire gap.
 - Length of the masks is not limited by EDM machine.
 - Fin geometry can be optimized.

Full Penetration Welds in a Prototype

Vacuum Leak Test

Beamline Masks

White Beam Mask

Pink Beam Mask

- Recently (June 2016) an ID beamline at NSLS-II had an urgent situation. 1 white beam mask and 2 pink beam masks were not received in time because of Glidcop brazing problem.
- These parts were built in 10 days in a small machine shop.
- All knife edges were machined on a manual lathe.

White Beam Mask as Installed

Knife Edge Cutting Tool

NSLS-II Crotch Absorber

- Brazing of the bent copper tubes in the grooves of the Glidcop body turned out to be very difficult.
- Initially only 6 crotch absorbers were installed. At other 54 locations absorbers without apertures were installed.
- Each time a frontend is installed the crotch absorber must be replaced and the entire cell must be baked out.

GlidCop Body

New Crotch Absorber Design

- New design from a single round bar of CuCrZr (no brazing or welding).
- Step 1: Conflat flange, beam aperture and water channels.
- Step 2: Back stop and nose tip. Spring wrapped copper tubes are inserted in the water channels.
- Step 3: The nose tip is bent to be in the mid-plane.
 - The nose tip was successfully bent in a prototype.
 - Thermal FE analysis shows a moderate temperature of 131°C at the nose tip.

Prototype Bent Nose Tip

Thermal FE Analysis

Summary and Conclusions

- A considerable progress has been made at NSLS-II in the implementation of the new HHL design concept first presented at MEDSI2014.
- Three BM and 3-PW frontends have been installed with all masks, slits, photon shutters and Be windows made from integral Conflat flanges (mostly in CuCrZr).
- The fixed mask design has been further developed and various options for solving the wire EDM gap problem have been investigated.
- Many beamline masks/shutters and SR crotch absorbers will be based on this design in the future.

