THE DESIGN OF A PRECISION MECHANICAL ASSEMBLY FOR A HARD X-RAY POLARIZER

STEVEN P. KEARNEY¹, DEMING SHU¹, AND THOMAS S. TOELLNER² Advance Photon Source, X-Ray Science Division

¹Nanopositioning Support Lab

²Inelastic X-ray and Nuclear Resonant Scattering

INTRODUCTION

What does the polarizer do?

Well... Quite simply it polarizes light.

How and why then?

Polarizer 1

Polarizes incoming photons

Polarizer 2 rotated 90° Filters scattered photons

INTRODUCTION

Now the why.

- Allows for analysis of polarization state of scattered photons.
- Can be used as a narrow bandwidth 10⁻⁷ eV filter for 14.413 keV synchrotron radiation using ⁵⁷Fe resonance [1].
- This polarizer will be used for next-generation Mössbauer spectroscopy (MS) [2].
- The above will allow for energy spectra to be collected rather than time spectra.

^[1] T. Toellner et al., Applied physics letters, vol. 67, no. 14, pp. 1993-1995, 1995.

POLARIZER DESIGN

Complete Assembly – Z4-4600

7DOF total for 3 Independent crystals (not shown)

POLARIZER DESIGN

Flexure Modeling

Flexure Modeling

Not Approximated (Ling's Method [3])

$$K_{\theta_Y} = \frac{M}{\theta_Y} = \frac{2EbR^2}{3f(\beta)}$$

$$f(\beta) = \frac{1}{\Delta} \left\{ \left(\frac{3 + 4\beta + 2\beta^2}{\gamma \Delta} \right) + \left(\frac{6\gamma}{\Delta^{3/2}} \right) \tan^{-1} \sqrt{\frac{2 + \beta}{\beta}} \right\},\,$$

$$\beta = t/(2R), \quad \gamma = 1 + \beta \quad \Delta = 2\beta + \beta^2,$$

Approximate Method

$$K_{\theta_Y} pprox rac{M}{\theta_Y} = rac{2Ebt^{5/2}}{9\pi R^{1/2}}$$

$$\sigma_{nom} = \frac{6M}{t^2b}$$

$$\sigma = K_t \sigma_{nom}$$

$$K_t = (1 + \beta)^{9/20}$$

t = 0.115, b = 4.572, R = 1.524 mm, M = 1 N mm, E = 204 GPa

Method	Stress [Mpa]	Angle [°]	Torsional Stiffness [N-mm/°]
Ling's	100.9	0.25	4.07
Approx.	99.2	0.24	4.18
% Error	-1.65	-2.68	2.70

^[3] C.-B. Ling, "On the stresses in a notched strip," J. of Appl. Mech. Trans. ASME, vol. 19, no. 2, pp. 141-146, 1952

FEA Flexure Mesh Validation

t = 0.115, b = 4.572, R = 1.524 mm, M = 3 N mm, E = 204 GPa

FEA Flexure Mesh Validation

FEA Flexure Mesh Validation

FEA Flexure Mesh Validation

13 Loops

300.16 270.14 240.13 210.11

180.10

150.08 120.06

90.05 60.03 30.02 0.00

FEA Flexure Mesh Validation

FEA Weak-Link Model Validation and Simulation

FEA Weak-Link Model Validation and Simulation

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

CONCLUSION

- 5 adaptive mesh loops reduce stress error to ~5%.
- Too fine of a mesh can start to increase stress error.
- Only small deformations in the FEA model, on the order of 12% of yield, agree with measurements.
- Final resolution of pitch stage could be as low as 5-10 nrad

THANK YOU!

QUESTIONS?

FUNDING SUPPORT

U.S. DEPARTMENT OF ENERGY, OFFICE OF SCIENCE, UNDER CONTRACT NO. DE-AC02-06CH11357

