LCLS-II KB Mirror Systems: Technical Challenges and Solutions
(Practice of Design Optimization)

L. Zhang, D. Cocco, N. Kelez, D.S. Morton

LCLS, SLAC National Accelerator Laboratory
2575 Sand Hill Road, Menlo Park, CA, 94025, United States

zhanglin@slac.stanford.edu
LCLS: Linac Coherent Light Source
LCLS vs. LCLS-II

14 GeV LCLS Linac used for x-rays up to 25 keV

1.0 - 25 keV (120 Hz, “copper” Linac)
LCLS vs. LCLS-II

South side source:
- 1.0 - 25 keV (120 Hz, “copper” Linac)
- 1.0 - 5 keV (≥100 kHz, SC Linac)

North side source:
- 0.2-1.2 keV (≥100 kHz, SC Linac)

4 GeV SC Linac in sectors 0-10
14 GeV LCLS Linac used for x-rays up to 25 keV

LCLS: Linac Coherent Light Source

MEDSI 2016, Sept. 11-19, 2016, L. ZHANG
LCLS vs. LCLS-II

4 GeV SC Linac in sectors 0-10

14 GeV LCLS Linac used for x-rays up to 25 keV

North side source:
- 0.2-1.2 keV (≥ 100 kHz, SC Linac)
- 1.0 - 25 keV (120 Hz, “copper” Linac)

South side source:
- 1.0 - 5 keV (≥100 kHz, SC Linac)

Table: LCLS-I Vs. LCLS-II

<table>
<thead>
<tr>
<th></th>
<th>LCLS-I Baseline</th>
<th>Now</th>
<th>HXU - Cu</th>
<th>HXU - SC</th>
<th>SXU - SC</th>
<th>SXU – Cu (TBC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon Energy Range (eV)</td>
<td>800 - 8,000</td>
<td>250 - 12,800</td>
<td>400 - 25,000</td>
<td>1000 - 5000</td>
<td>200 - 1300</td>
<td>250 - 6000</td>
</tr>
<tr>
<td>Repetition Rate (Hz)</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>929,000</td>
<td>929,000</td>
<td>120</td>
</tr>
<tr>
<td>Per Pulse Energy (mJ)</td>
<td>~ 2</td>
<td>~ 4</td>
<td>~ 4</td>
<td>~ 0.2</td>
<td>~ 2</td>
<td>~ 8</td>
</tr>
<tr>
<td>Maximum average power (W)</td>
<td>0.24</td>
<td>0.48</td>
<td>0.48</td>
<td>200</td>
<td>600</td>
<td>0.96</td>
</tr>
<tr>
<td>Photons/Second</td>
<td>~ 10^{14}</td>
<td>~ 10^{14}</td>
<td>~ 10^{14}</td>
<td>~ 10^{16}</td>
<td>~ 10^{17}</td>
<td>~ 10^{14}</td>
</tr>
</tbody>
</table>
LCLS vs. LCLS-II

4 GeV SC Linac in sectors 0-10

14 GeV LCLS Linac used for x-rays up to 25 keV

South side source:
- 1.0 - 5 keV (≥ 100 kHz, SC Linac)

North side source:
- 0.2-1.2 keV (≥ 100 kHz, SC Linac)

Baselines:
- LCLS-I
- Now

HXU - Cu
- 400 - 25,000
- 1000 - 5000

HXU - SC
- 200 - 1300

SXU - SC
- 250 - 6000

SXU – Cu (TBC)

<table>
<thead>
<tr>
<th></th>
<th>LCLS-I Baseline</th>
<th>Now</th>
<th>HXU - Cu</th>
<th>HXU - SC</th>
<th>SXU - SC</th>
<th>SXU – Cu (TBC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon Energy Range (eV)</td>
<td>800 - 8,000</td>
<td>250 - 12,800</td>
<td>400 - 25,000</td>
<td>1000 - 5000</td>
<td>200 - 1300</td>
<td>250 - 6000</td>
</tr>
<tr>
<td>Repetition Rate (Hz)</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>929,000</td>
<td>929,000</td>
<td>120</td>
</tr>
<tr>
<td>Per Pulse Energy (mJ)</td>
<td>~ 2</td>
<td>~ 4</td>
<td>~ 4</td>
<td>~ 0.2</td>
<td>~ 2</td>
<td>~ 8</td>
</tr>
<tr>
<td>Maximum average power (W)</td>
<td>0.24</td>
<td>0.48</td>
<td>0.48</td>
<td>200</td>
<td>600</td>
<td>0.96</td>
</tr>
<tr>
<td>Photons/Second</td>
<td>~ 10^{14}</td>
<td>~ 10^{14}</td>
<td>~ 10^{14}</td>
<td>~ 10^{16}</td>
<td>~ 10^{17}</td>
<td>~ 10^{14}</td>
</tr>
</tbody>
</table>
LCLS vs. LCLS-II

<table>
<thead>
<tr>
<th></th>
<th>LCLS-I Baseline</th>
<th>Now</th>
<th>HXU - Cu</th>
<th>HXU - SC</th>
<th>SXU - SC</th>
<th>SXU - Cu (TBC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon Energy Range (eV)</td>
<td>800 - 8,000</td>
<td>250 - 12,800</td>
<td>400 - 25,000</td>
<td>1000 - 5000</td>
<td>200 - 1300</td>
<td>250 - 6000</td>
</tr>
<tr>
<td>Repetition Rate (Hz)</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>929,000</td>
<td>929,000</td>
<td>120</td>
</tr>
<tr>
<td>Per Pulse Energy (mJ)</td>
<td>~ 2</td>
<td>~ 4</td>
<td>~ 4</td>
<td>~ 0.2</td>
<td>~ 2</td>
<td>~ 8</td>
</tr>
<tr>
<td>Maximum average power (W)</td>
<td>0.24</td>
<td>0.48</td>
<td>0.48</td>
<td>200</td>
<td>600</td>
<td>0.96</td>
</tr>
<tr>
<td>Photons/Second</td>
<td>~ 10^{14}</td>
<td>~ 10^{14}</td>
<td>~ 10^{14}</td>
<td>~ 10^{16}</td>
<td>~ 10^{17}</td>
<td>~ 10^{14}</td>
</tr>
</tbody>
</table>

South side source:
- 1.0 - 25 keV (120 Hz, “copper” Linac)
- 1.0 - 5 keV (≥100 kHz, SC Linac)

North side source:
- 0.2-1.2 keV (≥ 100 kHz, SC Linac)
LCLS vs. LCLS-II

South side source:
- 1.0 - 5 keV \((\geq 100\) kHz, SC Linac\)
- 1.0 - 25 keV \(120\) Hz, “copper” Linac)

North side source:
- 0.2-1.2 keV \(\geq 100\) kHz, SC Linac\)

<table>
<thead>
<tr>
<th>LCLS-I Baseline</th>
<th>Now</th>
<th>HXU - Cu</th>
<th>HXU - SC</th>
<th>SXU - SC</th>
<th>SXU – Cu (TBC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon Energy Range (eV)</td>
<td>800 - 8,000</td>
<td>250 - 12,800</td>
<td>400 - 25,000</td>
<td>1000 - 5000</td>
<td>200 - 1300</td>
</tr>
<tr>
<td>Repetition Rate (Hz)</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>929,000</td>
<td>929,000</td>
</tr>
<tr>
<td>Per Pulse Energy (mJ)</td>
<td>~ 2</td>
<td>~ 4</td>
<td>~ 4</td>
<td>~ 0.2</td>
<td>~ 2</td>
</tr>
<tr>
<td>Maximum average power (W)</td>
<td>0.24</td>
<td>0.48</td>
<td>0.48</td>
<td>200</td>
<td>600</td>
</tr>
<tr>
<td>Photons/Second</td>
<td>(\sim 10^{14})</td>
<td>(\sim 10^{14})</td>
<td>(\sim 10^{14})</td>
<td>(\sim 10^{16})</td>
<td>(\sim 10^{17})</td>
</tr>
</tbody>
</table>
X-ray instrument plans for LCLS-II

- 7 instruments fed by a single undulator at present
- 9 instruments available for LCLS-II

- NEH 1.1: Atomic, Molecular and Optical
- NEH 2.1: Resonant Inelastic X-ray Scattering
- NEH 2.2: Soft X-ray Research
- NEH 1.2: Tender X-ray Instrument
- XPP: X-ray Pump Probe
- XCS: X-ray Correlation Spectroscopy
- MFX: Macromolecular Femtosecond Crystallography
- CXI: Coherent X-ray Imaging
- MEC: Matter in Extreme Conditions

- SXU
- HXU

- 3 Soft X-ray
- 1 “tender” x-ray
- 5 Hard X-ray
KB mirror systems for Soft and Tender X-ray

NEH 1.1
- High Flux Soft X-ray
- Bendable K-B Pair — 1 μm
- Fixed Figure K-B Pair — 300nm
- 250-1300 eV

NEH 1.2
- Tender X-ray Instrument
- SXR Bendable K-B Pair — 1 μm
- HXR Bendable K-B Pair — 1 μm
- 400-6000 eV

NEH 1.2
- Tender X-ray Instrument
- SXR Bendable K-B Pair — 1 μm
- HXR Bendable K-B Pair — 1 μm
- 400-6000 eV

NEH 2.1
- RIXS
- Bendable K-B Pair — 2x10μm
- 250-1350 eV

NEH 2.2
- Mono Soft X-Ray
- Bendable K-B Pair — 1x4 μm
- 250-1350 eV

LCLS-II KB Mirror Systems: Technical Challenges and Solutions
MEDSI 2016, Sept. 11-19, 2016, L. ZHANG
KB mirror systems for Soft and Tender X-ray

NEH 1.1
• High Flux Soft X-ray
• Bendable K-B Pair — 1 μm
• Fixed Figure K-B Pair — 300nm
• 250-1300 eV

NEH 1.2
• Tender X-ray Instrument
• SXR Bendable K-B Pair — 1 μm
• HXR Bendable K-B Pair — 1 μm
• 400-6000 eV

NEH 2.1
• RIXS
• Bendable K-B Pair — 2x10μm
• 250-1350 eV

NEH 2.2
• Mono Soft X-Ray
• Bendable K-B Pair — 1x4 μm
• 250-1350 eV

→ 6 pairs of KB mirror systems
Some properties of XFEL, optics requirements

- Nearly monochromatic beam (especially with self-seeding)
 - K-B mirrors absorbs ~ 10% XFEL beam power, → to be actively cooled
Some properties of XFEL, optics requirements

- Nearly monochromatic beam (especially with self-seeding)
 - K-B mirrors absorbs ~ 10% XFEL beam power, \(\rightarrow \) to be actively cooled

- Fully coherent photon beam \(\rightarrow \) Wavefront preservation
 - 2*FWHM beam size needed

\[
\theta = 14 \text{ mrad}
\]

\[
\begin{align*}
\text{Unfocussed beam} & \quad 2 \text{ FWHM accept.} & \quad 1 \text{ FWHM accept.}
\end{align*}
\]
Some properties of XFEL, optics requirements

- Nearly monochromatic beam (especially with self-seeding)
 - K-B mirrors absorb ~ 10% XFEL beam power, → to be actively cooled

- Fully coherent photon beam → Wavefront preservation
 - 2*FWHM beam size needed

- Shape error requirement (SR ≥ 0.97)

![Diagram showing beam properties](image-url)
LCLS-II K-B mirror system

- Dynamically bendable
- Water cooled

WEPE33 KB Mirror Design for the LCLS-II
SXR Beam Line

FRBA04 LCLS-II KB Mirror Systems:
Technical Challenges and Solutions
KB mirror system, technical challenges

- Kirkpatrick-Baez (K-B) mirror configuration

- Ellipsoidal shape

- Technical challenges
 - Large Acceptance \Rightarrow Long mirror
 - Variable Source & Focal Points \Rightarrow Bendable Mirror
 - **Sub Nanometer Shape Error** \Rightarrow Limited Suppliers
 - High Demagnification \Rightarrow Tight Bending (stress issues, …)
 - Few tenth nrad residual bending error \Rightarrow **Variable Mirror Width**
 - High Thermal Loads & Variable Footprint \Rightarrow **Innovated Cooling**
 - Minimize the coupling between the mirror Bending & Cooling
Technical challenges

- Large Acceptance → Long mirror
- Variable Source & Focal Points → Bendable Mirror
- Sub Nanometer Shape Error → Limited Suppliers
- High Demagnification → Tight Bending (stress issues, …)

Sub-μrad residual bending error → Variable Mirror Width

- High Thermal Loads & Variable Footprint → Innovated Cooling
- Minimize the coupling between the mirror Bending & Cooling
Mirror profile optimization

- **Width profile defined by Bending Equation (BE)**

$$w(x) = \frac{12M(x)}{Et^3} R(x)$$

$$z(x) = \frac{\sin \theta(p+q)}{4pq+(p-q)^2 \cos^2 \theta} \times \left\{2pq-2[pq]^2-pqx^2-xpq(p-q)\cos \theta\right\}^{1/2} - x \cos \theta(p-q)$$

- **Residual Slope Error (RSE):**

$$\Delta \text{slope} = \text{slope} - \text{slope}_{\text{ellipse}}$$

$$F_1 = F_2 = 60 \text{ N}$$

$$F_1 = 62.92 \text{ N}$$

$$F_2 = 63.58 \text{ N}$$

- **Limitation of the analytical formula (Beam theory approximation)**
Mirror profile optimization

FE model with bending forces (VFM)

ANSYS Release 16.0
AUG 4 2015
08:31:00
ELEMENTS
/EXPANDED
PowerGraphics
EFACET=1
F

LCLS-II KB mirror: VFM, Fin=60, Fout=60 N, Ndxc=8, i=5

Silicon crystal orientation
(low stress & bending force)
- Mirror optical surface // Si (110) plan
- Tangential-axis // [001]

Optimized Mirror Profile (VFM, q=2m)

- L. Zhang, SMEXOS (2009), Grenoble, France
Optimized Mirror Profile – bending performance

Following effects to be taken into account

- Bender stiffness (not negligible)
- Anticlastic-bending effects
- Anisotropy of the Si crystal
- Geometrical non-linear effects in the simulation
Following effects to be taken into account:

- Bender stiffness (not negligible)
- Anticlastic-bending effects
- Anisotropy of the Si crystal
- Geometrical non-linear effects in the simulation
Following effects to be taken into account

- Bender stiffness (not negligible)
- Anticlastic-bending effects
- Anisotropy of the Si crystal
- Geometrical non-linear effects in the simulation
Following effects to be taken into account

- Bender stiffness (not negligible)
- Anticlastic-bending effects
- Anisotropy of the Si crystal
- Geometrical non-linear effects in the simulation
Optimized Mirror Profile – bending performance

Following effects to be taken into account

- Bender stiffness (not negligible)
- Anticlastic-bending effects
- Anisotropy of the Si crystal
- Geometrical non-linear effects in the simulation
Optimized Mirror Profile – bending performance

Following effects to be taken into account
- Bender stiffness (not negligible)
- Anticlastic-bending effects
- Anisotropy of the Si crystal
- Geometrical non-linear effects in the simulation

\[
\text{RMS}_{\Delta \text{slope}} \quad \text{(reduction factor: } \sim 10^4) \\
\begin{align*}
\text{43.7 } \mu\text{rad} & \quad \text{(with the profile defined by BE)} \\
\text{0.005 } \mu\text{rad} & \quad \text{(with the optimized profile by FEA)}
\end{align*}
\]

\[
\text{RMS}_{\Delta \text{slope-opt}} / \text{slope}_{PV-ellipse} \sim 2 \times 10^{-6}
\]
Technical challenges

- Large Acceptance \rightarrow Long mirror
- Variable Source & Focal Points \rightarrow Bendable Mirror
- Sub Nanometer Shape Error \rightarrow Limited Suppliers
- High Demagnification \rightarrow Tight Bending (stress issues, …)
- Sub-µrad residual bending error \rightarrow Variable Mirror Width

- High Thermal Loads & Variable Footprint \rightarrow Innovated Cooling
- Minimize the coupling between the mirror Bending & Cooling
Final cooling design

- Contact (Top-up-side), one single length water cooling based on SSRL designs for contact cooled mirror

Silicon intermediate Blocks (SiB)

Contact surface with mirror at a nominal gap (50µm) of GaIn

Cu cooling Block (CuB)

Bonded contact interface with GaIn or Indium foil

based on SSRL designs for contact cooled mirror
Final cooling design

- Contact (Top-up-side), one single length water cooling

- Silicon intermediate Blocks (SiB)
- Contact surface with mirror at a nominal gap (50µm) of GaIn
- Cu cooling Block (CuB)
- Bonded contact interface with GaIn or Indium foil

based on SSRL designs for contact cooled mirror

Preliminary Design Review of the KB mirrors for LCLS-II SXR
August 27, 2015, L. Zhang & D. Morton
Mirror cooling design – 3 schemes

➢ Top-up-side water cooling

1. Single-length cooling

- L. Zhang et al., SRI 2015 Conference
Mirror cooling design – 3 schemes

- **Top-up-side water cooling**

1. Single-length cooling

 ![Diagram of single-length cooling](image)

2. Variable-length cooling

 ![Diagram of variable-length cooling](image)

- L. Zhang et al., *SRI 2015 Conference*
Mirror cooling design – 3 schemes

➢ Top-up-side water cooling

1. Single-length cooling

2. Variable-length cooling

- L. Zhang et al. SRI 2015 Conference

14
Mirror cooling design – 3 schemes

- **Top-up-side water cooling**

1. Single-length cooling

2. Variable-length cooling

- L. Zhang et al., *SRI 2015 Conference*
Mirror cooling design – 3 schemes

- Top-up-side water cooling

1. Single-length cooling

2. Variable-length cooling

3. Electric heater + Single-length cooling

Preliminary Design Review of the KB mirrors for LCLS-II SXR
August 27, 2015, L. Zhang & D. Morton

- L. Zhang et al., SRI 2015 Conference
Mirror cooling design – 3 schemes

- **Top-up-side water cooling**

1. **Single-length cooling**

2. **Variable-length cooling**

3. **Electric heater + Single-length cooling**

- L. Zhang et al., SRI 2015 Conference
Mirror cooling design – 3 schemes

1. Single-length cooling

2. Variable-length cooling

3. Electric heater + Single-length cooling

\[RMS_{\text{thermal}} : = f \left(L_{\text{heater}}, P_{\text{aheater}}, x \right) \]

- L. Zhang et al., *SRI 2015 Conference*
Mirror cooling design – performance

- LCLS-II SXR K-B mirrors
 - For 20 W of XFEL beam power, full-length (top-up-side) cooling is sufficient
 - For 200 W of XFEL beam power, optimal, variable-length cooling is needed
Mirror cooling design – performance

LCLS-II SXR K-B mirrors
- For 20 W of XFEL beam power, full-length (top-up-side) cooling is sufficient
- For 200 W of XFEL beam power, optimal, variable-length cooling is needed

Resistive Element Adjustable Length
REAL Cooled Optics
(DoE funded R&D project, 2017-2018 FY)
Technical challenges

- Large Acceptance \Rightarrow Long mirror
- Variable Source & Focal Points \Rightarrow Bendable Mirror
- Sub Nanometer Shape Error \Rightarrow Limited Suppliers
- High Demagnification \Rightarrow Tight Bending (stress issues, \ldots)
- Sub-µrad residual bending error \Rightarrow Variable Mirror Width
- High Thermal Loads & Variable Footprint \Rightarrow Innovated Cooling

- Minimize the coupling between the mirror Bending & Cooling
 - Minimization of mechanical constraint effects of Eutectic GaIn as thermal interface (*presented* WEBA02)
 - Bend cooling blocks (design optimization practice)
Cooling blocks bending and translation

Single pusher: bending + translation

F

y

x

k_1

F

$bending + translation$

k_2

Flexor (spring) support
Cooling blocks bending and translation

Single pusher: bending + translation

F

k_1

Flexor (spring) support

k_2

KB mirrors for LCLS-II SXR beamline - progress report
Jan 25, 2016
Cooling blocks bending and translation

- Cooling block bent shape: \(y_{\text{CB}}(x, F, k_1, k_2) \)
- Mirror shape (ideal ellipse): \(y_{\text{mir}}(x, q) \)
- For given value of \(F, k_1, k_2, q \)
 - Minimization:
 - \(dU_y(x) = y_{\text{CB}}(x) - y_{\text{mir}}(x) \)
 - \(dU_y(x) \rightarrow \text{RMS, } d_{pv} \)
 - \(d_{pv} < 5 \, \mu\text{m} \)
Cooling block bent shape:

\[y_{CB}(x, F, k_1, k_2) \]

Mirror shape (ideal ellipse):

\[y_{mir}(x, q) \]

For given value of \(F, k_1, k_2, q \)
- Minimization:
 \[dU_y(x) = y_{CB}(x) - y_{mir}(x) \]
- \(dU_y(x) \rightarrow RMS, d_{pv} \)

Objective function:

\[f(F, k_1, k_2, q) \]

\(d_{pv} < 5 \mu m \)
Cooling blocks bending and translation

- Cooling block bent shape: \(y_{CB}(x, F, k_1, k_2) \)
- Mirror shape (ideal ellipse): \(y_{mir}(x, q) \)
- For given value of \(F, k_1, k_2, q \)
 - Minimization:
 - \(dU_y(x) \rightarrow RMS, d_{pv} \)
- Objective function: \(f(F, k_1, k_2, q) = RMS * d_{pv} \)

\(d_{pv} < 5 \mu m \)
1 pusher: F
2 flexor supports: k_1, k_2
- F: 6 ~ 10 N
- $k_1 = 52.93$ N/mm, $k_2 = 48.15$ N/mm

Uniform cross section

KB mirrors for LCLS-II SXR beamline - progress report
February 8, 2016
Cooling blocks: single pusher + elastic supports

1 pusher: F

2 flexor supports: k_1, k_2

- $F : 6 \sim 10$ N
- $k_1 = 52.93$ N/mm, $k_2 = 48.15$ N/mm

Uniform cross section

KB mirrors for LCLS-II SXR beamline - progress report
February 8, 2016
Cooling blocks: single pusher + elastic supports

1 pusher: \(F \)

2 flexor supports: \(k_1, k_2 \)

- \(F \): 6 \(\sim \) 10 N
- \(k_1 = 52.93 \text{ N/mm} \), \(k_2 = 48.15 \text{ N/mm} \)
Flexor Supports

Stainless steel thin blade

\[k = \frac{192EI}{L^3} = 16Ew\left(\frac{t}{L}\right)^3 \]

<table>
<thead>
<tr>
<th></th>
<th>(k_1)</th>
<th>(k_2)</th>
<th>(\Delta%)</th>
<th>(\Delta_0)</th>
<th>(\Delta_{\text{req}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>target</td>
<td>52.93</td>
<td>48.15</td>
<td>1%</td>
<td>(mm)</td>
<td>(mm)</td>
</tr>
<tr>
<td>(E) (N/mm²)</td>
<td>2.00E+05</td>
<td>2.00E+05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t) (mm)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3%</td>
<td>(0.0006)</td>
<td>±0.01</td>
</tr>
<tr>
<td>(L) (mm)</td>
<td>20</td>
<td>20</td>
<td>0.3%</td>
<td>0.06</td>
<td>±0.05</td>
</tr>
<tr>
<td>(w) (mm)</td>
<td>16.54</td>
<td>15.05</td>
<td>1%</td>
<td>0.150</td>
<td>±0.1</td>
</tr>
</tbody>
</table>

- Width \(w\) (add 10% to initial values) can be adjusted (re-machined) to fit exact \(k\)-values
- \(1\%\) accuracy for the values of \(k_1, k_2\) should be achievable
Cooling blocks: translation + rotation
Cooling blocks: translation + rotation
Cooling blocks: translation + rotation

\[dU_y(x) = y_{CB}(x) - y_{mir}(x) \]
Cooling blocks: translation + rotation

\[dU_y(x) = y_{CB}(x) - y_{mir}(x) \]
Summary

LCLS-II KB Mirror Systems: Technical Challenges and Solutions

Technical challenges
- Large Acceptance → Long mirror
- Variable Source & Focal Points → Bendable Mirror
- Sub Nanometer Shape Error → Limited Suppliers
- High Demagnification → Tight Bending (stress issues, …)
- Sub-µrad residual bending error → Variable Mirror Width
- High Thermal Loads & Variable Footprint → Innovated Cooling
 - Minimization of mechanical constraint effects of Eutectic GaIn as thermal interface (presented WEBA02)
 - Bend cooling blocks (design optimization practice)

LCLS-II K-B mirror system
- Dynamically bendable
- Water cooled

Prototype testing
- 2016 Q4

Final KB mirror system
- Mirror procurement 2017 Q1
- Mechanics procurement 2017 Q2
- Delivery 2018 Q1
- Assembly, Metrology and Tests 2018 Q2
- Installation & commission 2018 Q3
Acknowledgement

- E. Anderssen LBNL
- R. Baker ESRF
- J.C. Castagna SLAC/LCLS
- M. Church SLAC/SSRL
- R. Duarte LBNL
- D. Harrington SLAC/SSRL
- J. Krzywinski SLAC/SSRL
- T. Rabedeau SLAC/SSRL
- A. Ringwall SLAC/SSRL
- E. Ortiz SLAC/LCLS-II
- B. Schlotter SLAC/LCLS-II
- V. Srinivasan SLAC/LCLS, now India
- P. Stefan SLAC/LCLS
- Randy Whitney SLAC/LCLS

This work performed under DOE Contract DE-AC02-76SF00515.