

ESRF | The European Synchrotron

The New ID11 Nanoscope end-station A Nano-Tomography Scanner

A focus on the sample positioning stages

- I. ID11 Beamline
- II. Design architecture
- III. A rotation stage with nanometer-level performance together with an electrical slip-ring
- IV. A specific high precision linear stage
- V. Conclusion and perspectives

I. ID11 OVERVIEW

<u>Imaging techniques on the Nanoscope:</u>

Nano X-Ray Diffraction Computed Tomography (XRD-CT) Diffraction Contrast Tomography (rotation of a 3D sample) Fluo tomography (combination of scan and rotation)

X rays

Energy from 18 to 65 keV Final focalisation by a set of Nano Focusing Lenses Typical focal spot size ~100nm

XRD-CT technique – Continuous scan in ω and incremental positions of the Y-axis

II. Design architecture - Nanoscope end-station

Design architecture - Nanoscope - sample positioning stages

III. Design architecture - Rotation stage and slip ring

Cable box

Air bearing

Max. axial load Max. radial load Air consumption <20 NI/min Total mass 15.2 Stainless stee Material

NO mechanical coupling between the slave and the master rotor (except the stiffness of the cables)

Slip-ring:

Standard ball-bearings

Resistive torque < 1Nm

101 electrical ways for:

- -Capacitive probes 30kHz (PIMars)
- -Piezo actuators -30/135V (PIMars)
- -Piezo motors ±48V 10kHz (Nanopos)
- -RS422 encoder signals 1MHz (Nanopos)
- -15 auxiliary signals

Travel range

Repeatability

Resolution

± 5 mm / ± 10

± 100 nm / ± 2 µrad

10 nm / 1 µrad

150mm³

2nm³

 $0.8 nm^{3}$

[1-5] µm

III. Control Architecture - Rotation stage

III. Rotary stage – Metrology in BL working conditions

Rotary stage RT150up ID11 nanoscope Axial Error

Reference Sphere: Single diam. = 25.4 mm h = 242mm (from the top face) 5 forward of 5 full rotation (0 to 360 deg) - Meas. interval: 0,72 deg continuous motion mode, after warm-up, without drift correct. (500 points / turn - averaging 200 points @ 50kHz)

Date of measurement: 23/08/2016 - Operator : LD Meas. system : Lion + SEA (low sensivity)

All sample stages activated in closed-loop Dty-Rotation-PIMars-Nanopos

III. Rotary stage – Metrology in BL working conditions

Rotary stage RT150up ID11 nanoscope Radial Error

Rotating Sensitive Direction

Reference Sphere: Single diam. = 25.4 mm
h = 242mm (from the top face)
5 forward of 5 full rotation (0 to 360 deg) - Meas. interval: 0,72 deg
continuous motion mode, after warm-up
(500 points / turn - averaging 200 points @ 50kHz)

Date of measurement: 23/08/2016 - Operator : LD Meas. system : Lion + SEA min.synchronous error : 42 nm (φ=180°)

Fixed Sensitive Direction Y Reference Sphere: Single diam. = 25.4 mm

h = 242mm (from the top face)

forward of 5 full rotation (0 to 360 deg) - Meas. interval: 0,72 deg continuous motion mode, after warm-up, without drift correct. (500 points / turn - averaging 200 points @ 50kHz)

Asynchronous errors (repeatability) are larger than expected

Asynchronous_5turns_pos

Synchronous 5turns pos

-0,04

-0,05

➤ Mainly induced by an internal thermal drift in the RT150up (already visible during the characterization of the rotary stage standalone)

1 Div. = 2 nm

IV. DTy – A high precision Linear Stage designed and assembled at ESRF

DTy stage	SPECIFICATIONS (@ POI H ~250mm)	
Stroke	10 mm	
Speed	1mm/s	
Carried load	37 kg	
Accuracy	3 μm	
Repeatability bidirectional (full stroke)	4 μm	
Repeatability bidirectional (stroke 100µm)	10 nm	
MIM	10 nm	
Straightnesses full stroke	10 μm	
Repeat. Straightnesses FS	1 μm	
Pitch error full stroke	5 μrad	
Repeat. pitch error FS	0.5 μrad	

IV. DTy Linear stage - Mechanical Design

IV. DTy Linear stage – FEA calculations of Eigen frequencies

IV. DTy Linear stage – Metrology characterisation

DTy stage	PEL meas.	SPECS
Accuracy & repeat. full stroke	263 nm / R 50nm	3μm R4
Accuracy & repeat. stroke 100μm	66 nm / R 27nm	3μm R10nm
MIM positive or negative	6 nm	10 nm
Straightness horiz. . full stroke	37 nm / R 33nm	10 μm R1
Straightness horiz. stroke 100µm	22 nm /R 20nm	/
Straightness vertic. full stroke	212 nm / R 115 nm	10μm R1
Straightness vertic. Stroke 100μm	27 nm / R 27nm	/
Pitch error Ryx full stroke	2.9 μrad / R 0.39 μrad	5μrad R0.5
Yaw error Ryz full stroke	4.5 μrad / R 0.33 μrad	/
Roll error Ryy full stroke	1.23 μrad / R 0.93 μrad	/
Accuracy & repeat full stroke @ Height 50mm and without load	47 nm /R 23nm	/

V. CONCLUSION AND PERSPECTIVES

- ✓ An electrical slip-ring can pass sensitive signals
- ✓ The concept of integration used with the high precision rotary stage has
 no significant effect on the error motions
- ✓ A specific but simple linear stage can achieve a very high precision without any complex control systems
- √The RT150up stage can achieve very low motion errors
- X The thermal drifts of the rotary stage are not only along the linear axes X Improvements are possible :
 - reduction of heat sources
 - improvement of air-supplying distribution
 - thermal control of the RT150up frame
 - active compensation of error motions

Thank you for your attention

Any questions?

Acknowledgments

BL Team: Jonathan Wright – Henri Gleyzolle – José-María Clément – Emmanuel Papillon

AAM Group: Yves Dabin – (ID16B end-station concept)

PDMU-PEL Metrology Lab: Hans-Peter van der Kleij – Léo Rousset

PAMU Assembly Lab: Giovanni Malandrino – Robin Grégoire – Rodolphe Grivelet **Subcontracted Design & Drafting**: Catherine Heyman (*Design & Mécanique*) – *SEI*

