Data Management strategies at LEAPS facilities: the example of the ESRF

Vincent Favre-Nicolin Algorithms & scientific Data Analysis

+ A. Götz, J-F. Perrin, A. de Maria, R. Dimper

MORE BRILLIANCE & PHOTONS...TOWARDS BIG DATA

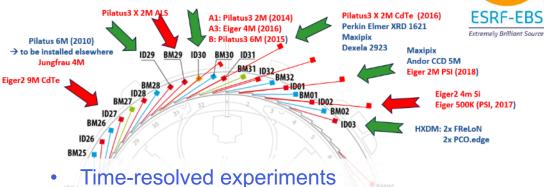
Yearly production Estimates:

2016 - **2.8 PB**

2018 - 8 PB

2021 - **20 PB**

2025 - **60 PB**

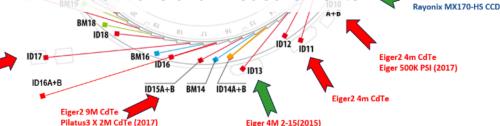

Archiving:

SL8500 tape library Current architecture handles up to 170 PB

Data Policy: (FAIR principles)

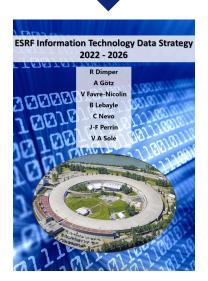
- archive 'raw' data for 10 years
- Public (DOI) after 3 years

Detector portfolio:


LVP: Pilatus3 X CdTe 900K-W

High spatial resolution 1: Eiger2 16M CdTe 2: Pilatus3 2M (2014)

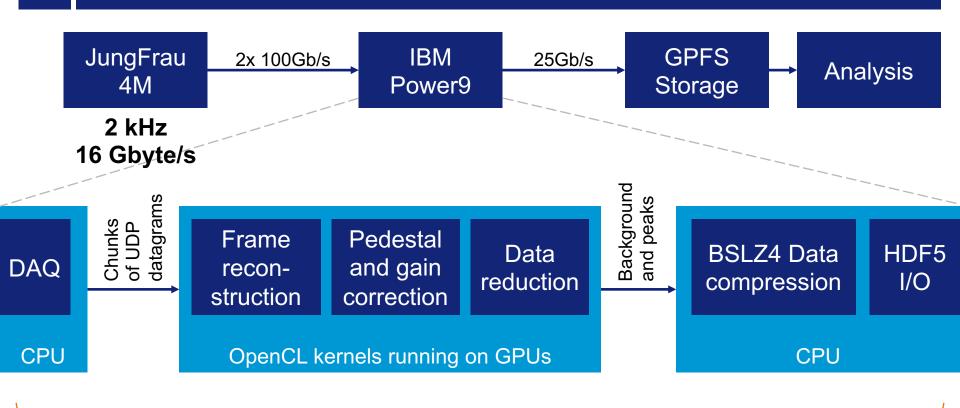
> to be installed elsewhere Large field-of-view Eiger2 2M CdTe linear


High throughput Pilatus 1M (2010) from BM29

Multidimensional measurements

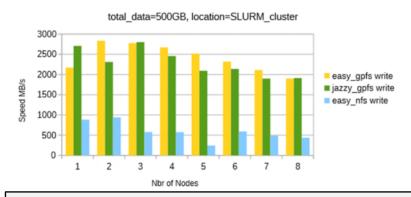
DATA MANAGEMENT PILLARS

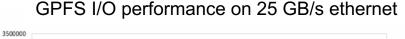
- Explosion of the data volume
- Significant increase of complexity of the data sets
- limited dedicated resources

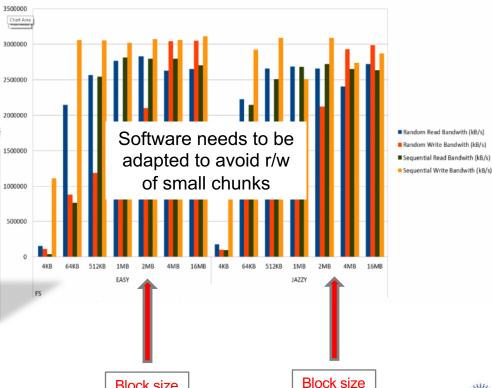

ARCHIVAL & DISTRIBUTION

PROCESSING & ANALYSIS

DATA ACQUISITION: SERIAL XTALLOGRAPHY




Pipeline running @2KHz



STORAGE: GPFS

Mean Node Write throughput for various node numbers

Block size

Ethernet

- Most common computer network technology
- Network speed up to 400Gbps for backbone links, up to 100Gbps for cluster nodes
- Cluster nodes come with standard 25Gbps interfaces
- GPFS can fully exploit network bandwidth (i.e. 2.5 GBytes/s from a single thread on a 25Gb/s eth link)

Data is:

- kept on disk for 90 days to enable analysis
- total disk capacity: 15 PB
- then archived

HDF5 / NEXUS – RICH & EXTENDABLE DATA FORMAT

NXroot

Top level. One per file.

NXentry

One group per measurement

NXinstrument

Describe the instrument.
Only one per NXentry

measurement (@NXcollection)

Flattened view of everything measured

Only one per NXentry

sample (@NXsample)

Define the physical state of the sample during the scan

NXdata

The default data to be plotted.

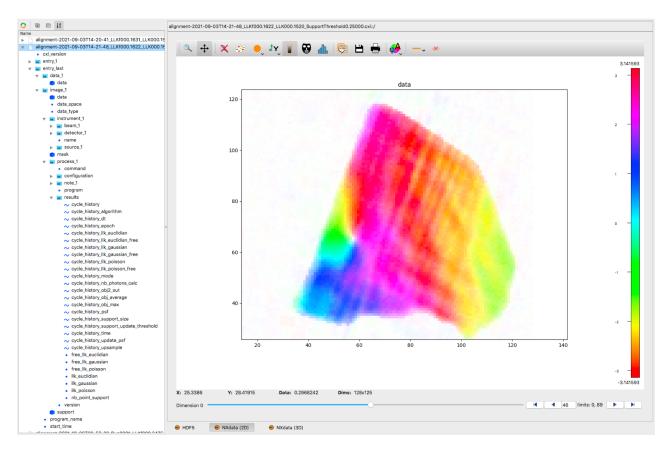
One NXdata group per plot

user (@NXuser)

Details of a user, i.e., name, affiliation, email address, etc

Exclusive **Acquisition** Domain

Almost exclusive **Acquisition** Domain


User/Scientist Domain

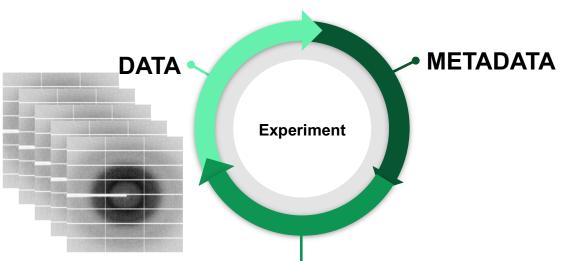
User/Scientist Domain

Administrative Domain (GDPR? DOI?)

NEXUS: SILX VIEWER

The silx Toolkit

Scientific Library for eXperimentalists http://www.silx.org/

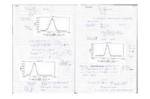

Standard tools & widgets for data analysis and display.

Automatic rendering of NeXuS files

DATA ACQUISITION: E-LOGBOOK

"The ultimate goal of FAIR is to optimise the reuse of data"

https://www.go-fair.org/fair-principles

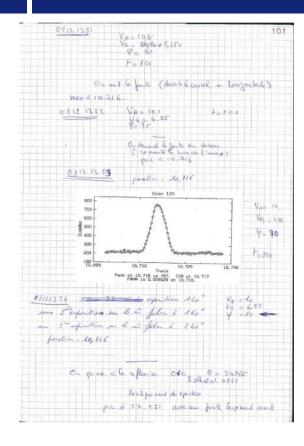


Monocinioniau	OI .
Energy	7.21972
Wavelength	1.7173
d_spacing	3.13542
Reflection	111
Туре	SI
Usage	Bragg

Detectors

#1 indet2		#2 iodet1		#3 idet		#4 fdet	
istopy	-1.40174	ioy	4.1973	dety	12.6	fdetz	-67
Istopz	-1.3	loz	6.67288	detz	9.75		

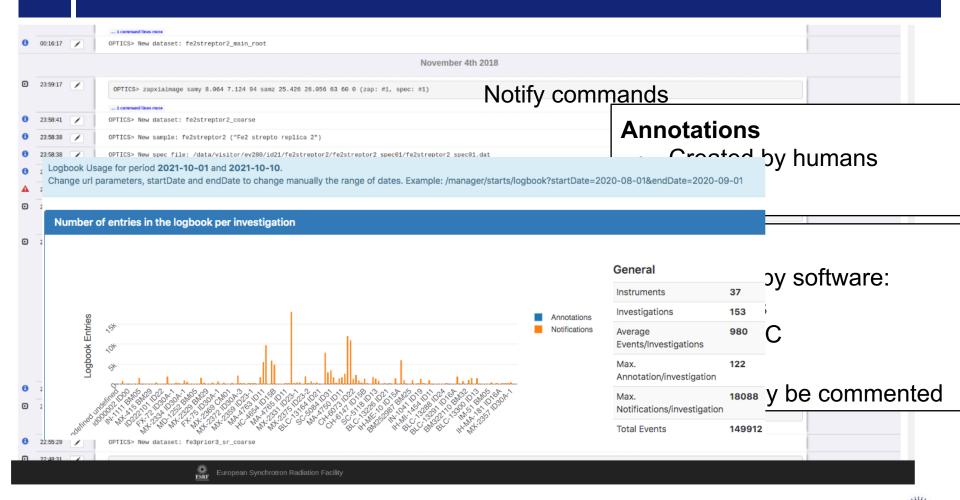
Slits					
Primary slit		Secondary slit	Secondary slit		
		Blade Front	1.52		
		Blade Back	-0.02		
		Blade Up	0.798		
		Blade Down	0.702		
Horizontal Cap	1.2	Horizontal Gap	0.123546		
Horizontal Other	-0.02	Horizontal Offset	0.1855		
Vertical Gap	1.2	Vertical Gap	0		
Versical Offset	-0.58	Vertical Offset	-0.0144546		



LOGBOOK

- Protocol and notes
- Decision-making
- Observations and/or conclusions

E-LOGBOOK REQUIREMENTS



- A logbook is a **list of entries** (logs or events)
- Time stamped in chronological order and sequential
- Support rich text and WYSIWYG editor
- A logbook can be attached to: beamline, proposal, session, dataset, sample, datafile
- Upload images and files

Plus:

- Control access. User management and security
- API exposed to be used by users or software (SPEC, Bliss, etc..)
- Support different types of logs. For instance: info, error, debug

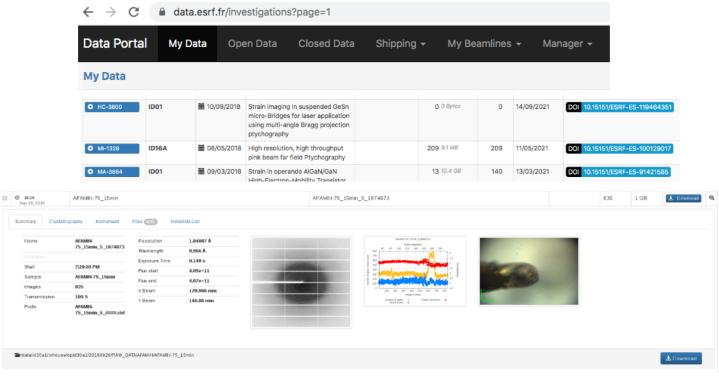
E-LOGBOOK


ESRF DATA POLICY: GUIDING PRINCIPLES

- 1. ESRF is the custodian of raw data and metadata
- 2. ESRF will automatically collect metadata for all experiments
- 3. ESRF will store metadata in a metadata catalogue (ICAT)
- High level metadata (Title, Authors, Beamline, Abstract, Experiment Report) will be published as soon as possible
- Experimental team has sole access to the data during the so-called embargo period of 3 years; can request to extend embargo period
- 6. After the embargo ESRF will make the data Open Access
- 7. Users need to create an identifier to get Open Access data
- 8. Proprietary data belong by default to the PI and are not kept

DATA PORTAL

Data Service
Explore and Download
data


Persistent Identifiers

Make your data findable

and searchable

THE DATA PORTAL


https://data.esrf.fr

DOWNLOADING LARGE DATA: GLOBUS

For users that want to download large volume of experimental data (>2GB), ESRF users can access the Globus service

- The service has just opened this week for all users and all data
- This is made possible as data access is protected using Access Control Lists (ACLs) on the storage – users cannot see others data!

DATA PORTAL STATISTICS

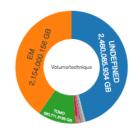
Since last 7 days

Summary

Datasets	930
Beamlines	22
Total Volume	14.9 TB
Total Number of files	854741

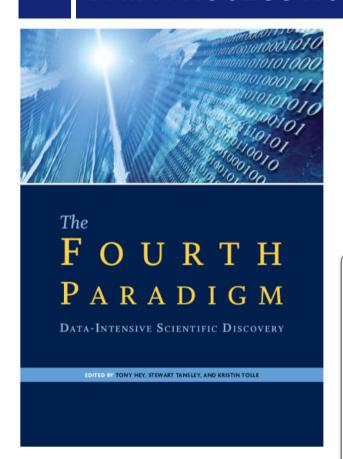
Dataset

919
12683
16.5 GB
2.0 TB
32.4


ΑII

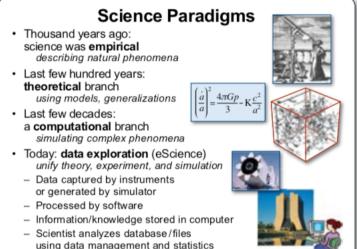
Summary

Datasets	1000853
Beamlines	47
Total Volume	5.1 PB
Total Number of files	373111077


Dataset

Juluoot	
Average file count	373
Max files	200002
Average volume	5.4 GB
Max volume	8.1 TB
Average metadata	26.8

DATA PROCESSING & ANALYSIS



Need to ensure that data analysis tools:

- Cover all data-intensive techniques
- Are exploited by a larger user community
- Are actively maintained & improved

Need for more computing resources:

 Single beamlines exploiting the ESRF-EBS photon flux can saturate the existing CPU+GPU cluster

Single-algorithm analysis of of datasets is not enough!

Scientists need tools to explore & interpret experimental results.

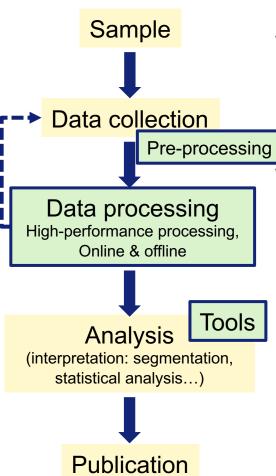
CHALLENGES: STREAMLINE PROCESSING

Many experimental techniques can be processed by complex but now robust algorithms:

- Macromolecular Crystallography (since early 2000s)
- Tomography
- Coherent imaging
- Scanning fluorescence
- **Powder Diffraction**
- SAXS

These techniques are already standardised as part of the data policy implementation

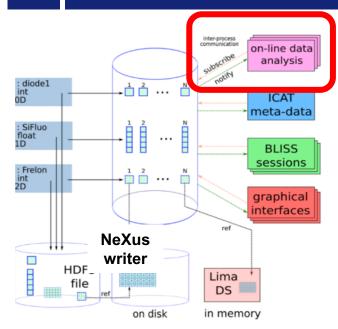
A workflow-based analysis is often possible:


- Unsupervised & automated data processing
- Users need not be expert in the technique (but know the limits & can handle indicators)

Free users from purely technical aspects of data analysis:

- When the science is in the samples, not the technique
- Faster data analysis... and publication
- Allow a larger community to exploit those streamline-capable techniques.
- **Industrial-users** friendly

DATA ANALYSIS AS A 'SERVICE'?

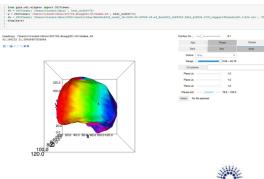

What Data Analysis as a Service is not:

- Doing the most of the analysis for all users
- Users with no understanding the fundamentals & limits of the techniques

What DAaS is:

- Handle data processing when it can be automatized
- Provide tools (software, computers, GPU) for online data processing; enable good decisions during experiments
- Provide tools and computing resources (when possible) for offline analysis
- Make data available (data policy)
- For <u>selected</u> techniques: enable users to focus on interpretation & scientific results and not be overwhelmed by data handling issues

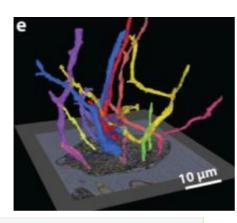
ONLINE DATA ANALYSIS


Before:

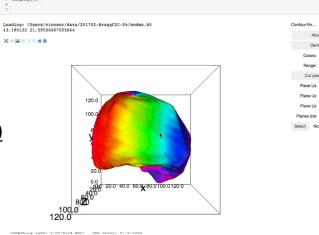
- 'one-way pipeline': acquisition, measure, display, store, analyse Now:
 - Need (more) online analysis for user decision
 - Automated analysis-driven acquisition
 - Analysis procedures are not pre-defined except in a few cases (MX): need to have algorithm-development friendly interfaces
 - Scientist community python-educated: provide standard access so all scientists can easily access & work on data

Development topics (TID + ISDD + Exp.Div):

- On-the-fly (in-memory) data access (up to 16 GB/s) for analysis/triage/compression... (see: Memcached, ASAP:O, Bluesky's DataBroker)
- Workflows
- User interfaces (web,..)



HPC USE CASES: EVOLUTION


Machine learning:

- **Big data** from scattering / spectroscopy e.g. millions of one-dimensional patterns (from a map or time series)
- Automated segmentation of 3D volumes (up to 16k x 1.6k x 1.6k), or series of volumes (fast tomography can yield hundreds of 2000**3 datasets per hour)
- Increasing need for GPUs (ML, Fourier & Radon transforms, etc..)

Web interface/jupyter notebooks:

- Interactive computing (often not an efficient use of resources but extremely practical)
- Portable remote UI (manage/view jobs)
- Future need:
 - remote 3D view (+ segmentation) –
 learn from gaming platforms ??

''/Users/vincent/data/2020-Coccolithes/RetFen4036_candi_3D-2020-02-04T08-39-44_Run0002_LLKf003.8944_LLK004.0703_SupportThreshold0.11422.cxi', 70

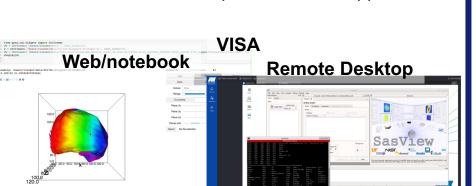
w = CDIViewer('/Users/vincent/data/201702-BraggCDI-Pt/modes.h5', html_width=70)

DATA ANALYSIS CHALLENGES FOR LEAPS

ExPaNDS

Facilities can't provide software for all analysis.

Community is important (50% of analysis packages)!


Need to train for remote/cloud computing:

- Users
- Software scientists
 - New interfaces
 - GPU+CPU+slurm

(free access for all ESRF users)

 Also need standards (virtual images) for cloud software... or developments won't happen!

Facilities can't provide compute power for all analysis.

Remote/cloud/high-performance computing has become a **basic commodity** for all researchers.

Must users apply for extra compute time, e.g. with EOSC? More 'paperwork' which will slow down adoption of modern computing.

It should be time to provide a basic set of cloud computing to every researcher – *no questions* asked.

Benefits:

- Faster adoption of cloud resources
- Faster education to modern computing (machine learning..)

Who can pay for this?

