

Breaking cryo-EM resolution limits enabling structure based drug discovery targeting Helicobacter pylori, a WHO class I carcinogen

Cunha E. S.* et al. (Nature Communications, 2021)

Eva S. Cunha Researcher @ Hartmut 'Hudel' Luecke group Structural Biology and Drug Discovery Group

What can we see with Cryo-EM?

Nobel prize in chemistry in 2017

Wang, 2016

Cryo-EM vs X-ray crystallography

Cryo-EM vs X-ray crystallography

Cryo-EM vs X-ray crystallography

Cryo-EM resolution revolution

- Cell
- ▲ Embo J
- J Biol Chem
- J Mol Biol
- J Struct Biol
- J Virol
- Mol Cell
- Nat Struct Mol Biol
- Nature
- PNAS
- × Science
- + Structure

Cryo-EM resolution revolution

A Titan Krios requires a shielded room about 6 meters high

5 Million Euros

Cryo-EM microscope composition and types

Microscope class	Typical examples	marginal cost/day (in 2016 Euros, including detectors)	
Entry level	FEI T12, JEOL 1400	250	
Mid-range	FEI F20/Talos, JEOL 2100F	600	
Upper-mid-range	FEI F30/Polara, JEOL 3200FS	1000	
High-end	FEI Titan Krios	3000	

https://www.med.uio.no/ncmm/english/news-and-events/news/2018/the-case-for-cryo-em-in-norway.html

What is important in a cryo-EM laboratory?

Cunha E. S. et al.* (Nature Communications, 2021)

Cryo-EM state-of-the-art installation for high-resolution structure determination

< 30 % ambient humidity

Stable temperature

Hood for liquid ethane

Clean liquid nitrogen

Cold FEG

Gatan 20 eV/Selectris 10 eV energy filter

K3 or Falcon 4 direct electron detector

128 Cores

Large memory (1 TB)

GPUs (40 GB each)

100s TB of storage

High-throughput data transfer (Infiniband)

Cryo-EM sample preparation pipeline

Cryo-samples are frozen in liquid ethane to get vitrified ice

- 1. Apply sample to grid
- 2. Blot away excess buffer (controlled force/ time/ humidity/ temperature)
- 3. Plunge grid into liquid ethane. For water to vitrify, the temperature has to drop faster than 10⁵-10⁶ K/s (Dubochet et al 1988)
 - Liquid nitrogen boils on contact poor cooling capacity
 - Water is a poor thermal conductor (thin sample is mandatory < 3 μm)
 - Plunge at > 1 m/s

Cryo-samples are frozen in liquid ethane to get vitrified ice

- 1. Apply sample to grid
- 2. Blot away excess buffer (controlled force/ time/ humidity/ temperature)
- 3. Plunge grid into liquid ethane. For water to vitrify, the temperature has to drop faster than 10⁵-10⁶ K/s (Dubochet et al 1988)
 - Liquid nitrogen boils on contact poor cooling capacity
 - Water is a poor thermal conductor (thin sample is mandatory < 3 μm)
 - Plunge at > 1 m/s

https://www.youtube.com/watch?v=M0LHiAwKKes

Saibil, 2000

Processing pipeline for cryo-EM images

Single particle 3D reconstruction is based on averaging. We need many images of the same molecule in random orientations, however every individual image is very noisy with unknown orientation.

Thuman-Commike, 2001

Cryo-EM processing workflow for high-resolution structure determination

Breaking cryo-EM resolution limits enabling structure based drug discovery targeting Helicobacter pylori, a WHO class I carcinogen

Cunha E. S.* et al. (Nature Communications, 2021)

Eva S. Cunha Researcher @ Hartmut 'Hudel' Luecke group Structural Biology and Drug Discovery Group

Helicobacter pylori, a WHO Class 1 carcinogen

- Over 50% of the world population are chronically infected
- Resistance to antibiotic treatment rising rapidly and has already reached 30% eradication failure

Survival at acidic pH requires cytoplasmic urease

Inhibitor identified through high-throughput screening is an hydroxamic acid

Cunha E. S.* et al. (Nature Communications, 2021)

U-BME and U-SHA structures show a dodecameric arrangement of the 1.1 MDa urease

- 175,895 particles for U-BME, resolution 2.5 Å
- 187,461 particles for U-SHA, resolution 2.0 Å

U-BME and U-SHA structures show a dodecameric arrangement of the 1.1 MDa urease

- 175,895 particles for U-BME, resolution 2.5 Å
- 187,461 particles for U-SHA, resolution 2.0 Å

Tetrahedral arrangement of *H. pylori* urease composed of two subunits

Cunha E. S.* et al. (Nature Communications, 2021)

Likelihood-based density modification improves map quality and nominal resolution

Likelihood-based density modification improves map quality and nominal resolution

Likelihood-based density modification improves map quality and nominal resolution

Tetrahedral arrangement of *H. pylori* urease composed of two subunits

RMSD analysis between BME and SHA bound urease shows highest variation at the flap region covering the active site

RMSD

RMSD analysis between BME and SHA bound urease shows highest variation at the flap region covering the active site

Active site with Ni²⁺ SHA/BME

Flap Cunha E. S.* et al. (Nature Communications, 2021)

U-SHA provides the most open flap region structural snapshot to date

Structure	Clash score	Rama outliers [%]	Rama allowed [%]	Rama favored [%]
Crystal PDB 3.0 Å NAT	51.00	7.11	16.71	76.18
Crystal PDB 3.0 Å AHA	38.00	2.86	13.21	83.92
Crystal, rerefined 3.0 Å NAT	23.69	3.90	14.25	82.12
Crystal, rerefined 3.0 Å AHA	18.09	1.60	9.25	89.50
Cryo-EM U-SHA, 2.0 Å	0.60	0.00	4.15	95.85
Cryo-EM U-BME, 2.5 Å	4.57	0.00	4.55	94.45

Drug development may target residues in the flap region H^{138} H^{221} H^{248} H^{136} H^{274}

Flap

Inhibitor (SHA)

Active site with Ni²⁺

Cunha E. S.* et al. (Nature Communications, 2021)

Single particle Cryo-EM can be used for drug discovery targeting *H. pylori* urease

- U-SHA adds a structural snapshot with the most open flap region observed experimentally to date
- Increasing the interactions between SHA and the flap region might lead to compounds with lower IC₅₀ values.
- The distance from the bi-nickel center to the outer surface of the dodecamer is about 30 Å and presumably requires movement of the flexible flap region for access.

Thank you for your attention!

Dr. Hartmut Lücke (Hudel)

Dr. Marta Sanz Gaitero

Members of the Hudel lab

Collaborators!

Xiaorui Chen – University of California, Irvine Deryck Mills – Max Planck Institute for Biophysics, Frankfurt

Cryo-EM facilities: Umeå

Dr. Linda Sandblad

Dr. Michael Hall

Aarhus

Dr. Thomas Boesen

Dr. Andreas Bøggild

