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What can we see with Cryo-EM?

Tissues Cells Organelles (Macro)molecules
1T mm 100 um 10 um Tum 100 nm 10nm 1 nm 0.1 nm  Approximate
Max Res/ nm
Light microscopy 500
——————————————————————————————31
X-ray microscopy 30
Electron tomography  pr———— 2
Small-angle x-ray scattering -GG 2
Electron crystallography & 0.2
Single-particle electron microscopy — TE—— :
X-ray crystallography 0.1
0.1

Nuclear magnetic resonance
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X-ray crystallography vs Cryo-EM
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X-ray crystallography vs Cryo-EM
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Number of EM structures

Cryo-EM vs X-ray crystallography
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Number of EM structures
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Number of EM structures

Cryo-EM vs X-ray crystallography
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Cryo-EM resolution revolution
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Cryo-EM resolution revolution
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A Titan Krios requires a shielded room about 6 meters high

5 Million Euros




Cryo-EM microscope composition and types
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Electron Microscope

Microscope class

Typical examples

~ marginal cost/day (in 2016
Euros, including detectors)

Entry level FEIT12, JEOL 1400 250
Mid-range FEI F20/Talos, JEOL 2100F 600
Upper-mid-range  FEI F30/Polara, JEOL 3200FS 1000
High-end FEI Titan Krios 3000

https://www.med.uio.no/ncmm/english/news-and-events/news/2018/the-case-for-cryo-

em-in-norway.html

Passmore, 2016


https://www.med.uio.no/ncmm/english/news-and-events/news/2018/the-case-for-cryo-em-in-norway.html

What is important in a cryo-EM laboratory?

Cunha E. S. et al.* (Nature Communications, 2021)



Cryo-EM state-of-the-art installation for high-resolution structure determination

<30 % ambient humidity
Stable temperature
Hood for liquid ethane

Clean liquid nitrogen

Cold FEG
Gatan 20 eV/Selectris 10 eV energy filter

K3 or Falcon 4 direct electron detector
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128 Cores

Large memory (1 TB)
GPUs (40 GB each)
100s TB of storage

High-throughput data
transfer (Infiniband)



Cryo-EM sample preparation pipeline
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Cryo-samples are frozen in liquid ethane to get vitrified ice

1. Apply sample to grid

2. Blot away excess buffer (controlled force/ time/
humidity/ temperature)

3. Plunge grid into liquid ethane. For water to vitrify,
the temperature has to drop faster than 10°-106
K/s (Dubochet et al 1988)

- Liquid nitrogen boils on contact - poor cooling

capacity ,
- Water is a poor thermal conductor (thin EMend & B @
sample is mandatory < 3 um) = @ﬂ
@ 20 ©

- Plunge at>1m/s

Edge-on view of an unsupported part of
the water layer

Saibil, 2000

Liquid ethane
(113 K)




Cryo-samples are frozen in liquid ethane to get vitrified ice

1. Apply sample to grid

2. Blot away excess buffer (controled force/ time/
humidity/ temperature)

3. Plunge grid into liquid ethane. For water to vitrify,
the temperature has to drop faster than 10°-106
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https://www.youtube.com/watch?v=MOLHiAwKKes

Saibil, 2000


https://www.youtube.com/watch%3Fv=M0LHiAwKKes

Processing pipeline for cryo-EM images

Single particle 3D reconstruction is based on averaging. We need many images of the same molecule in random
orientations, however every individual image is very noisy with unknown orientation.
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Cryo-EM processing workflow for high-resolution structure determination

10,000 Movies

50 hrs
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Helicobacter pylori, a WHO Class 1 carcinogen

Gastritis
Majority

Q!

Ulceration
10-20%

Prevalence
[ Not applicable
[ <20%
[120-34.9%

W 35-54.9%

M 55-69.9%

W >70%

Cancer
1-2%

Created with mapchart.‘net ©

Zamani, M, et al., Aliment Pharmacol Ther. 2018

* Over 50% of the world population are chronically infected

* Resistance to antibiotic treatment rising rapidly and has already reached 30% eradication failure



Survival at acidic pH requires cytoplasmic urease

medium H* urea pH 1-6 gastric juice
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Inhibitor identified through high-throughput screening is an hydroxamic acid
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U-BME and U-SHA structures show a dodecameric arrangement of the 1.1 MDa urease

Titan Krios
e K2

« 175,895 particles for U-BME, resolution 2.5 A
« 187,461 particles for U-SHA, resolution 2.0 A




U-BME and U-SHA structures show a dodecameric arrangement of the 1.1 MDa urease
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Tetrahedral arrangement of H. pylori urease composed of two subunits
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Cunha E. S.* et al. (Nature Communications, 2021)



Likelihood-based density modification improves map quality and nominal resolution

Cunha E. S.* et al. (Nature Communications, 2021)
Terwilliger, T.C., Ludtke, S.J., Read, R.J. et al. Nat Methods 17, 923-927 (2020)



Likelihood-based density modification improves map quality and nominal resolution
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Likelihood-based density modification improves map quality and nominal resolution
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Tetrahedral arrangement of H. pylori urease composed of two subunits

Cunha E. S.* et al. (Nature Communications, 2021)



RMSD analysis between BME and SHA bound urease shows highest variation at
the flap region covering the active site

Flap
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Cunha E. S.* et al. (Nature Communications, 2021)



RMSD analysis between BME and SHA bound urease shows highest variation at
the flap region covering the active site

Active site with Ni?* SHA/BME Flap

Cunha E. S.* et al. (Nature Communications, 2021)



U-SHA provides the most open flap region structural snapshot to date

Structure Clash score Rama outliers [%] Rama allowed [%] Rama favored [%)]
Crystal PDB 3.0 A NAT 51.00 7.11 16.71 76.18
Crystal PDB 3.0 A AHA 38.00 2.86 13.21 83.92
Crystal, rerefined 3.0 A NAT 23.69 3.90 14.25 82.12
Crystal, rerefined 3.0 A AHA 18.09 1.60 9.25 89.50
Cryo-EM U-SHA, 2.0 A 0.60 0.00 4.15 95.85

Cryo-EM U-BME, 2.5 A 4.57 0.00 4.55 94.45




Drug development may target residues in the flap region

Flap Inhibitor (SHA) Active site with Ni2*

Cunha E. S.* et al. (Nature Communications, 2021)



Single particle Cryo-EM can be used for drug discovery targeting H. pylori urease

e U-SHA adds a structural snapshot with the most open flap
region observed experimentally to date

* Increasing the interactions between SHA and the flap region
might lead to compounds with lower ICs, values.

* The distance from the bi-nickel center to the outer surface of
the dodecamer is about 30 A and presumably requires
movement of the flexible flap region for access.

Cunha E. S.* et al. (Nature Communications, 2021)



Thank you for your attention!

Dr. Hartmut Liicke (Hudel) Collaborators! Cryo-EM facilities:
Dr. Marta Sanz Gaitero Xiaorui Chen — University of Ume3
California, Irvine Dr. Linda Sandblad
Deryck Mills — Max Planck Dr. Michael Hall

Members of the Hudel lab Institute for Biophysics, Frankfurt Aarhus

Dr. Thomas Boesen
Dr. Andreas Bgggild
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