

CALIPSOplus JRA2: Prototype of Data Analysis as a Service Platform

Aidan Campbell (ESRF)
Daniel Webster (PSI)

Motivation

 Light sources are generators of big volumes of complex scientific data and their users need assistance in analysing the scientific data.

- Our aim is to provide a remote Data Analysis As a Service (DAAS)
 portal and platform for users to:
 - Access their experimental data
 - Use pre-packaged Data Analysis software available at each institute
 - Access onsite computer resources to assist with data reduction and processing

CALIPSOPlus DAAS Portal

- Joint Project: ALBA/ESRF/PSI
- Written: Angular 7 / Django
- Common home page which connects user to institute portal
- Custom installation tested at: ESRF, ALBA, ELETTRA, PSI, DESY, SOLEIL, DLS
- Services:
 - Jupyter Notebooks
 - Containers
 - Virtual Machines

Resources

RESOURCE

RESOURCE

RESOURCE

Proposal ID: S0014

Machine name: goofy_tu

Machine type: base_image

Creation Date: 10/1/2019 16:30

Expiration Date: -

CALIPSOPlus DAAS Portal Architecture*

Jupyter Notebooks (ESRF)

Currently

- 40+ users
- Limited hardware resources

Near Future

- 100+ users
- SLURM
 - Scalability
 - GPU Access
- More GPUs available

Jupyter Notebooks (DESY)

- 2018 2019
 - 180+ users
 - Typically 60-120
 - concurrent sessions
 - SLURM
 - Scalability
 - GPU Access
 - 3 AMD dedicated nodes
 - Other partitions can
 - be used too

Maxwell Jupyter Job Options

Current Status					
Partition	# nodes	# avail	# GPUs avail	# P100 avail	# V100 avail
jhub	3	3	0	0	0
maxwell	61	46	0	0	0
maxgpu	19	10	10	5	5
all	327	186	0	0	0
allgpu	88	48	48	38	5

Spawn

Compute Options: VM, Container, Bare Metal

Pre-installed software

Pre-installed software Sudo privileges

Containers

- Computer that scientists and users can access with pre-installed software entirely in the web
- Scientists can:
 - Request a specific Linux OS (Ubuntu, CentOS, Debian etc)
 - Install their own software
 - Access their data (NFS)
 - Do analysis on site hardware from home/university
- Developers can:
 - Create/update container images with Github
 - Containers will update automatically on portal

Virtual Machines

- Computer that scientists and users can access with pre-installed software entirely in the web
- Scientists can:
 - Request a specific OS (including Windows)
 - Can't install their own software (security risks)
 - Access their data
 - Do analysis on site hardware from home/university
- Use Cases tested:
 - PyMca (ESRF), pyFAI (ESRF), PtychoShelves (PSI), Savu (DLS),
 CrysFEL (DESY)

Future Developments

- Integrate experiment data within the portal
 - Custom plug-ins required
- Building tailored Notebooks for beamlines
- Create containers/virtual machines without needing an experiment
- Write report on needs of Calipsoplus community wrt European Open Science Cloud
- Integrate results with PaNOSC and ExPaNDS DAAS portal

PSI Deployment

- This project represents an ideal opportunity to prove emergent technologies
 - Containerisation and orchestration thereof
 - Microservice Architectures
 - "DevOps" methodologies
- PSI chose to deploy the portal on Red Hat OpenShift
 - Enterprise-grade Kubernetes distribution
- CALIPSOplus portal had to be deployed as a Microservice Architecture
 - A wealth of experience gained for PSI in this methodology

PSI Use Case

- We engaged our cSAXS Beamline for our CALIPSOplus use case
 - cSAXS Coherent Small-Angle X-ray Scattering uses Ptychography (among other techniques) for image reconstruction
 - Ptychography: computationally generate images by processing coherent interference patterns
 - The application we are using for this is PtychoShelves

PtychoShelves, a versatile high-level framework for high-performance analysis of

ptychographic data

- Paper can be found here: https://scripts.iucr.org/cgi-bin/paper?zy5001
 - (Will paste into chat window)

PSI Architecture

Deploying the Application

 We deploy CALIPSOplus as a Microservice Architecture via "Continuous Integration/Continuous Deployment" (CI/CD) from GitLab:

- A new build is triggered, released, and deployed automatically to our OpenShift instance, upon committing new code
- This is "DevOps" in action

Demonstration - Screenshots

 We select the proposal we are interested in, launch our chosen container on top of this data, and connect to it via RDP or VNC

 A Linux "system" will now be at our disposal, and our scientific application is already mapped-in and ready to run

Demonstration - Screenshots

We can then run our MATLAB package, and get our results:

Live Demo – please standby...

We will now show a live demo of the portal in action

Conclusions

- CALIPSOplus JRA has been very useful in bringing together sites to collaborate and share a prototype portal for providing Data Analysis as a Service
- Feedback from users was positive and demonstrated the need for such services
- Jupyter service is being generalised at most sites
- Other services (containers+VM) are under test
- Main difficulty encountered in providing DAAS services in production is the lack of data analysis policy at all the sites (a survey has been prepared to get feedback from sites)
- Future developments will be in EOSC with PaNOSC+ExPaNDS

Acknowledgments

. 55

A. Campbell, A. Göz, A. Poax, J. Kiefer, T. Vinont, A. Sdé, A. de Maris, M. Reegan, V. Rivve-Nicolas, B. Rouse é

. 4

D.Salvat, ACamps,D.Sande:

• Eler

G.Kourous is şl. Andrian, D. Palmisino

Paul Scheme hattus

M.van Dakn, SEgi, D.Webber AAshbo

• DES

J. Reppin ESdium

Diamond LightSouth

T.Schoorja

SOLEII

M.Ounsy, G.Vigue

Helmholtz Zertrum Drougenfloss mehrt

B Schramm M Onthorn

Thank You

...questions?

Backup slides

 Extra slides which can be used in case there are questions on certain details

Jupyter Notebook Prototypes

- SLURM (DESY, ESRF)
 - Interactive notebook server created using a scheduler
 - GPU support
 - 12 hour session
 - Cannot install new software (except by pip install --user)
- SudoSpawner
 - Single machine with GPU support
 - Very limited hardware resources
- Kubernetes (ALBA, PSI)
 - Load balanced notebooks (more computing resources)
 - Unlimited session time
 - Can install new software (apt-get, pip, etc) temporarily
 - Notebook is culled after X hours of inactivity
 - Multiple custom notebook images

Virtual Machines

- Virtual machines can be created using multiple systems used by each site.
- ESRF:
 - KVM
- Others:
 - OpenStack
 - KVM
 - Citrix
 - Vsphere / VMWare
- Creating a container can take time
 - Maintain "bank" of virtual machines available at all times

Containers

Previously

- Limited to Docker
- Limited to a single machine (not scalable)
- Apache Guacamole
- NFS for data access

Now

- Kubernetes
 - Scalability
 - Orchestration
- Apache Guacamole but in the same browser
- NFS for data access

Administration

- View resource usage for Containers and Virtual Machines
- Upload new container and vm images
- Manage all containers and virtual machines
- Manage all users

