

# Longitudinal Stability with Landau Cavities at MAX IV

Francis Cullinan, Åke Andersson, Jonas Breunlin, David Olsson, David K. Olsson, Magnus Sjöström, Pedro Fernandes Tavares.



#### **Outline**

- MAX IV facility and double-RF systems
- Longitudinal collective effects in the two rings
  - Robinson (cavity fundamental modes)
  - Coupled-bunch mode (cavity higher-order modes)
- Robinson mode coupling
- Nonuniform fill:
  - Static phase transient
  - Coupled-bunch modes (tune spread)
- Bunch-by-bunch feedback
- Cavity parking

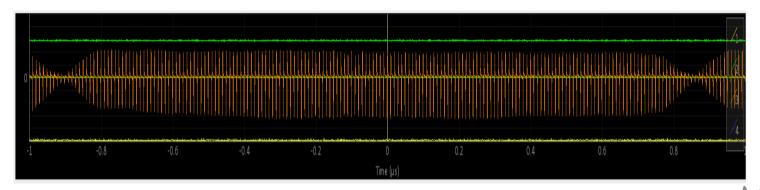


The MAX IV Facility



| Parameter                                      | 3 GeV<br>ring | 1.5 GeV<br>ring |
|------------------------------------------------|---------------|-----------------|
| RF frequency/MHz                               | 100           |                 |
| Landau-cavity harmonic                         | 3             |                 |
| Design current/mA                              | 500           |                 |
| Natural bunch length/ps                        | 40            | 49              |
| Bunch length with Landau-cavity lengthening/ps | 196           | 195             |
| Harmonic number                                | 176           | 32              |
| Number of main (Landau) cavities               | 5(3)          | 2(2)            |

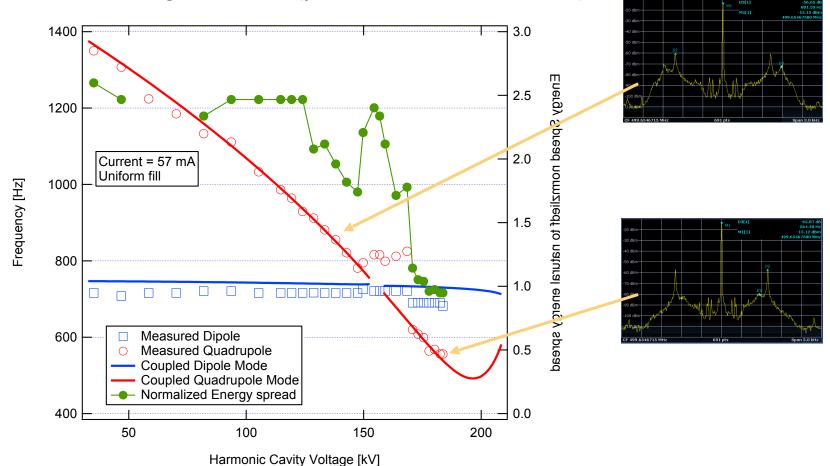



#### 1.5 GeV Ring

- 130 mA-500 mA (design) possible to stable with LCs only
  - Robinson stable
  - No change in main RF voltage with current
  - Around 80 kV per Landau cavity
- Delivery currently at 400 mA
- Uniform fill
- Minimal temperature-tuning required
- Possible to 'park' one LC or tune differently to maintain flat potential (demonstrated up to 240 mA)



#### 3 GeV Ring

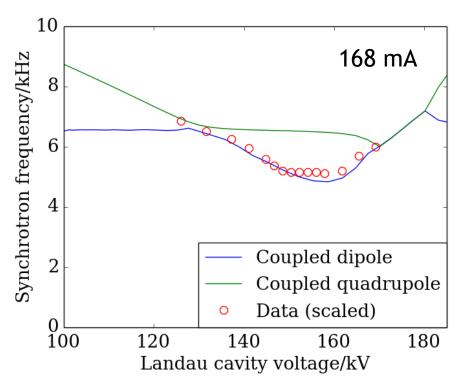

- Extensive temperature-tuning required
- Transition to delivery with LC-lengthened bunches November 2018
- Delivery now at 250 mA (RF power limitation)
  - Mode-0 damper (D. McGinnis)
  - Nonuniform fill (~5 bunch gap)
- Running with 5 of 6 main cavities (one recently reinstalled)



#### LCs and Coupled Robinson Instabilities

- Theoretical curves: R.A.Bosch et al, PRSTAB Vol. 4 074401, 2001
- Beam response observed on spectrum analyser, excitation by BbB feedback system

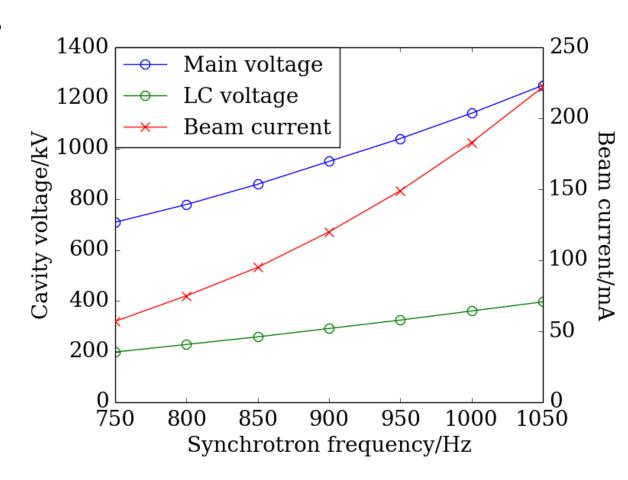
Experimental LC voltage rescaled (possible calibration error)






Data by F. Cullinan, A. Andersson, R.A. Bosch & P. F. Tavares

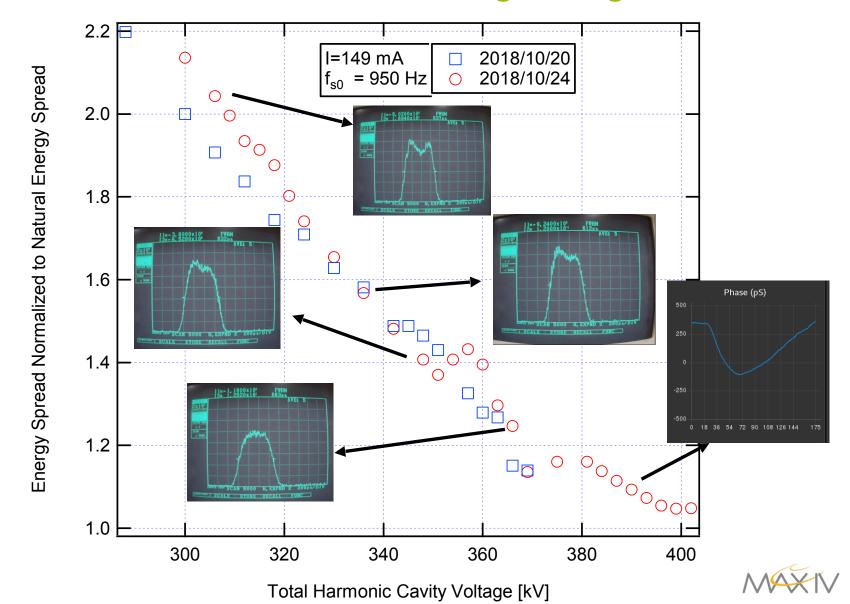
#### Robinson Mode Coupling - 1.5 GeV


- Same phenomenon observed in 1.5 GeV ring
- Robinson damping factor of 100 stronger because of main-cavity detuning

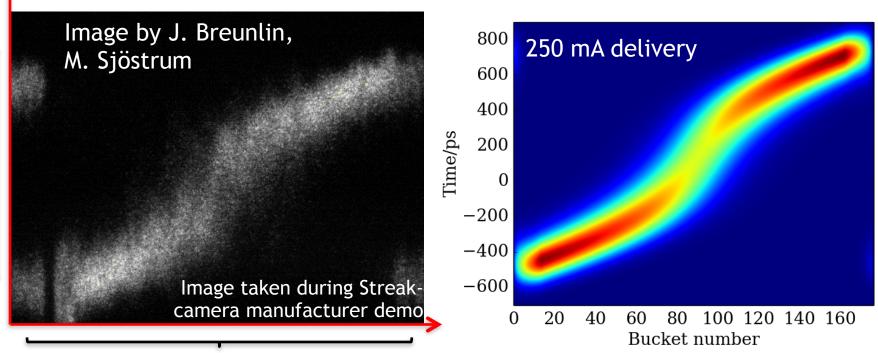




#### 3 GeV Ring


Current ramped while maintaining the flat potential condition:





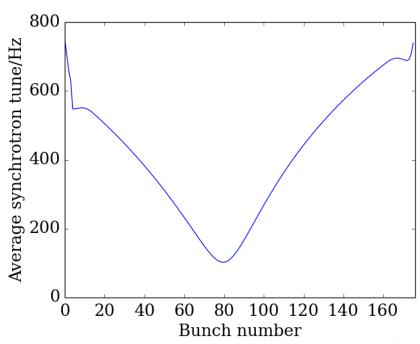

8

### Harmonic Cavities: Suppression of Coupled Bunch Instabilities and Bunch Lengthening



- Nonuniform fill leads to phase transients and interbunch tune spread
- Reproduced using matrix method:
  T. Olsson, F. Cullinan, Å. Andersson, PRAB 21 120701, (2018).



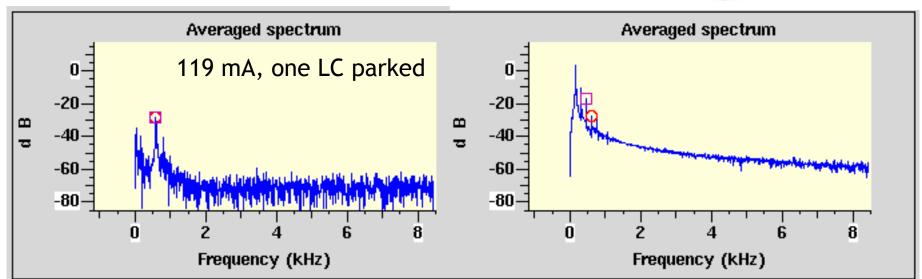



## Nonuniform fill - Coupled-bunch modes

 Add up the forces on a single bunch as system of coupled resonators

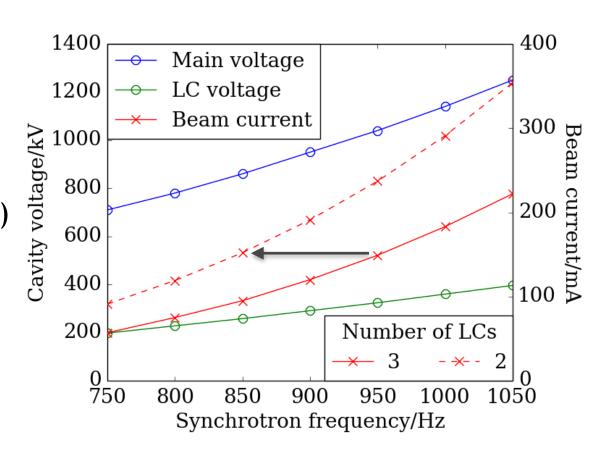
$$\tau_{l}'' - i\frac{2}{\mathcal{T}_{0}}\tau_{l}' + \omega_{s,l}^{2}\tau_{l} = \frac{\alpha_{c}}{E_{0}T_{0}}\sum_{j=0}^{h-1}\sum_{n=0}^{\infty}\tau_{j}(nT_{0})\operatorname{Re}\left[F_{l}^{*}F_{j}q_{j}\frac{dW}{dt}(nT_{0} + \Delta t(\tau_{l}, \tau_{j}))\right]$$

- Coupled-bunch modes can be evaluated including interbunch Landau damping
- Tune spreads:
  - Uniform fill: 360 Hz intrabunch
  - Nonuniform fill: 180 Hz interbunch
- More detailed analysis needed





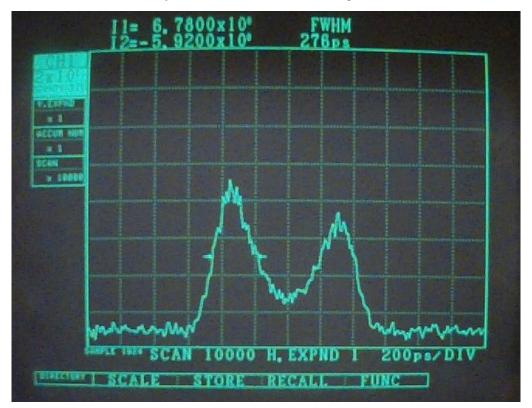

#### Bunch-by-bunch feedback with Landau Cavities


- Feedback challenging with large tune spread
- Able to capture remnant coupled-bunch modes
- Two-tap differentiator filter with downsampling
- So far, not used in nonuniform fill (Front/Back-end frequencies)





#### Landau cavity parking


- Lower RF voltage required for flatpotential at same current
- LC power =
  (Beam power)/(n²-1)





#### Main Cavity Parking

- Two main cavities parked
- Overstretching instead of slow coupled-bunch mode
- Limited to 150 mA by transmitter power





#### Conclusion

- Landau cavities play a crucial role in delivery in both storage rings at MAX IV
- Clear differences seen between two rings. Stable beam easier in 1.5 GeV ring due to:
  - Increased Robinson damping
  - Sparser coupled-bunch modes (factor≈5)
  - Lower impedance (fewer cavities)
- Static transient in nonuniform fill can be evaluated with matrix method
- Tune spread between bunches helps to fight longitudinal instabilities
- Parking one Landau cavity will help with going to higher current, installing more IDs in future



15

#### References

#### Landau damping with nonuniform fill:

- G. Penco, M. Svandrik, "Experimental studies on transient beam loading effects in the presence of a superconducting third harmonic cavity", Phys, Rev. ST Accel. Beams 9 044401, 2006.
- T. Olsson, F. J. Cullinan, Å. Andersson, "Self-consistent calculation of transient beam loading in electron storage rings with passive harmonic cavities", Phys, Rev. Accel. Beams 21 120701, 2018.
- G. Bassi, A. Blednych, V. Smaluk, "Self-consistent simulations and analysis of the coupled-bunch instability for arbitrary multibunch configurations", Phys, Rev. Accel. Beams 19 024401, 2016.
- K. A. Thompson, R. D. Ruth, "Transverse and longitudinal coupled bunch instabilities in trains of closely spaced bunches", PAC 1989, SLAC-PUB-4872.
- O. Naumann, J. Jacob, "Fractional filling induced landau damping of longitudinal instabilities at the ESRF", PAC 1987.
- M. H. Wang, P. J. Chou, "Study of uneven fills to cure the coupled-bunch instability in SRRC", PAC 2001.

#### General Landau cavity:

- P. F. Tavares, Å. Andersson, A. Hansson, J. Breunlin, "Equilibrium bunch density distribution with passive harmonic cavities in a storage ring", Phys, Rev. ST Accel. Beams 17 064401, 2014.
- R. R. Lindberg, "Theory of coupled-bunch longitudinal instabilities in a storage ring for arbitrary rf potentials", Phys, Rev. Accel. Beams 21 124402, 2018.
- M. Venturini, "Passive higher-harmonic rf cavities with general settings and multibunch instabilities in electron storage rings", Phys, Rev. Accel. Beams **21** 114404, 2018.
- R. A. Bosch, K. J. Kleman, J. J. Bisognano, "Robinson instabilities with a higher-harmonic cavity", Phys, Rev. ST Accel. Beams 4 074401, 2001.



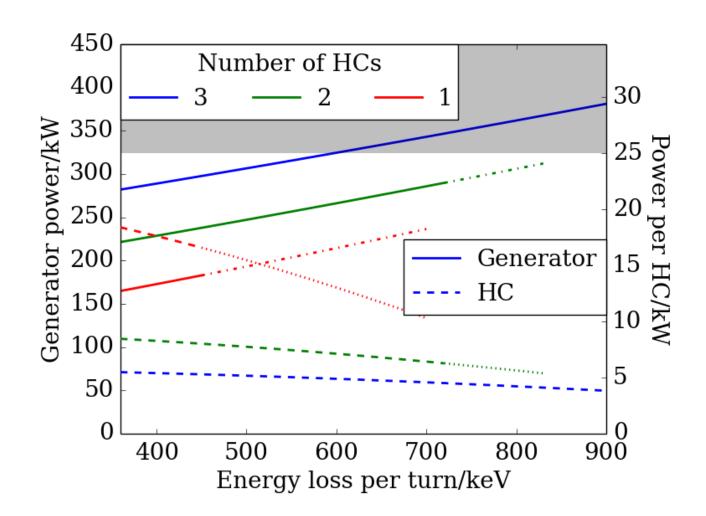
## Our 300 MHz 3rd Harmonic Cavities





Inner length/diameter: 312mm/400mm

Theory  $R_{sh}/Q$ : 5.7M $\Omega$ /21600


(Definiton:  $R_{sh} = V^2/P$ )

Measured Q: Around 20900 →

 $R_{sh} = 5.5 M\Omega$ 



#### **Power Requirements**





### Landau cavity parking

| Number of<br>Landau cavities | 3                    |            |  |
|------------------------------|----------------------|------------|--|
| RF voltage/MV                | Voltage per<br>LC/kV | Current/mA |  |
| 0.71                         | 66                   | 57         |  |
| 0.78                         | 76                   | 75         |  |
| 0.86                         | 86                   | 95         |  |
| 0.95                         | 97                   | 120        |  |
| 1.04                         | 108                  | 149        |  |
| 1.14                         | 120                  | 183        |  |
| 1.25                         | 132                  | 222        |  |

| 2                    |            |
|----------------------|------------|
| Voltage per<br>LC/kV | Current/mA |
| 99                   | 91         |
| 114                  | 119        |
| 129                  | 152        |
| 145                  | 191        |
|                      | 237        |
| 180                  | 291        |
| 198                  | 354        |



### 3 GeV ring

| Synchrotron frequency/Hz | RF voltage/MV | LC voltage per cavity/kV | Current/mA |
|--------------------------|---------------|--------------------------|------------|
| 750                      | 0.71          | 66                       | 57         |
| 800                      | 0.78          | 76                       | 75         |
| 850                      | 0.86          | 86                       | 95         |
| 900                      | 0.95          | 97                       | 120        |
| 950                      | 1.04          | 108                      | 149        |
| 1000                     | 1.14          | 120                      | 183        |
| 1050                     | 1.25          | 132                      | 222        |



