

ALBA Status Ferran Fernandez

On behalf of the Accelerator Division

XXVII ESLS Workshop ALBA Status November 28th 2019

Outline

Introduction

Operation

- Statistics
- SCW reparation
- RF operation improvements

Accelerator Developments

- Linac
- Beam Dynamics
- Radiofrequency
- Beam instrumentation
- Magnetic measurement lab.

Introduction

XXVII ESLS Workshop ALBA Status November 28th 2019

Layout

Parameter	Value		
Energy	3 GeV		
Circumference	268.8 m		
Emittance	4.5 nm·rad		
Current	250 mA		
Rf frequency	500 MHz		
# cavities	6		
Long straights	4 (8 m)		
Medium straights	12 (4 m)		

Scientific productivity

Operation

- Statistics
- SCW reparation
- RF operation improvements

2019 Operation

BL [h]	4680
M [h]	1192
SPR [h]	16
CSN [h]	0
TOTAL [h]	5888 h

Same numbers for 2020

Beam Availability (until 18/11/2019)

MTBF & MTTR

No beam events

49(-2) no beam events

+131.2 h in decay mode

89.0 h of no beam

5 FAILURES ACCOUNT FOR MORE THAN 40% OF THE DOWNTIME

XXVII ESLS Workshop ALBA Status November 28th 2019

SCW repair

- On September 2018 current increased from 150mA to 200mA
- Start having quenches at SCW (reported on ESLSW-2018)
- Winter shutdown SCW repair
- Bronze screws were broken.
- Two halves of liner were separated, touching the cryostat vacuum chamber.

SCW repair

REASON (?): Stress on liner by eddy currents when quenching (?)

- When a quench in one of the SC coils is detected, the power supply is disconnected and the system of coils is discharged through a dump resistor.
- 2. The decreasing magnetic field induces eddy currents on the copper liner trying to compensate the change of magnetic flux.
- 3. Those **induced current loops** have an associated **magnetic moment** and are **attracted** towards regions of higher magnetic flux density, i.e. **towards the magnetic poles**.

Force estimations (at $oldsymbol{t} = oldsymbol{0}$)	
Induced current per pole [Amp]	400
Force on each liner wall per pole [N]	140
Total force on each liner wall [Tons]	1.67
Force per screw [kg]	(17)

SCW repair

Replace all bronze screws by stainless steel ones ₹ TaurusTrend@crpc01 4.05 K TemperatureT2 200 Current 150 mA 150 mA 200 mA 3.10 K

RF operation improvements

- RF team is continuously working on reducing the beam dumps
 - September 2019: 250 mA top-up
 - Cavities voltage increased (3 MV total RF voltage)
 - More conditioning is needed
 - SR fully filled with L3 IOT since May 2019.

	2017	2018	2019
RF ITCK with beam dump	18	28	17
Beam Downtime due to RF [hours]	12.3	18.1	10.9

^{*} Until September 2019

RF operation improvements

- After Body Current interlock, noise is induced in electronics of neighbour plant
 - PSM current filtered with ferrites
 - PSM voltage filtered with RF low pass filters
 - HV enable signal filtered with optical link

Body currents that tripped the beam Jan 2018 - Aug 2019: **31%** From Sept 2019: **0%**

RF operation improvements

 Trip compensation: Oscillations after a trip cause voltage drop in the cavity and therefore to lose the beam

 Trigger is sent to the DLLRF for feedforward compensation

Accelerator Developments

- Linac
- Beam Dynamics
- Radiofrequency
- Beam instrumentation
- Magnetic meas. lab.

Linac improvements

SBM optimization by "simplex" algorithm

- Goals: improve beam transmission in SBM
- Figure of merit: FCT4/FCT1

FCT4/FCT1 [%]

Linac improvements

Linac To Booster Optimization Project

- Ongoing: Li2Bo beam alignment using Beam Base Alignment scripts
- Ongoing: Optimization of LTB_quads settings by Simplex scripts

Preliminary results:

Good response to LTB-orbit correction script

Linac improvements

Ongoing: Find a solution in case Buncher-cavity fails

XXVII ESLS Workshop ALBA Status November 28th 2019

Preparing for LOREA operation

Design Phase:

- Check vacuum chamber impedance to ensure beam stability
- Check influence to other beamlines and possible solutions

Presently:

- Correcting coils made of strips glued to vacuum chamber
- Look Up Tables to avoid tune and betabeating (avoid disturbances to rest of the BLs)

Preparing for FAXTOR operation

- FaXtoR requires a more round beam in its source point
- Several lattices have been studied/tested
- Solution has been found, but lifetime and instabilities have to be improved

Mistral Fast Polarization Switching

Mistral slow (moving the slit) operation during Dichroism measurements

Mistral fast (moving the beam) operation during Dichroism measurements

 It allows a faster polarization switch and a more repeatable beamline illumination of the two polarizations

Mistral Fast Polarization Switching

- Angle bump in MISTRAL to switch between two different polarizations
- Change on the FOFB golden orbit; synchronized at 16 sectors
- Simulations, tests with beam, and hardware modifications in power supplies

Simulations – HW modifications required

Mistral Fast Polarization Switching

- Tests at the Beamline with a permalloy magnetic particle
- The magnetization polarity of the magnetic domains can be clearly determined

BUMP zero (90 images, 2 sec)
We were almost centered on one polarization

BUMP -280 µrad (60 images, 2 sec) Reversion around -200 µrad

3rd Harmonic cavity

- 4 cavities at 1,5MHz
- Active (20kW)

Former CLIC-CERN collaboration

- Same design as SR RF cavities scaled 1/3
- HOM Dampers with N transition to extract power of HOM and to avoid ferrites + brazing
- Cavity Prototype
 - Sept '19 signed contract with AVS
 - Delivery expected in spring '21
- Transmitter (20kW SSA)
 - Soon...

SiPM Beam Loss Detector

In collaboration with

- Beam lost monitor system based on scintillating optical fibers + SiPM detectors
- Possibility to identify the place of the losses
- Preliminary tests of remote control done using a skippy-TANGO interface

SiPM Beam Loss Detector

Scope Mode

- Debug mode not intended for normal operation, just for calibration
- Example of turn by turn losses during a TopUp injection cycle

Calibration

SiPM response calibration with beam turned to be too complicated

Counting Mode

Example: Acquired losses during a beam scraping

Example: Beam lost and reinjection

New Pinhole and ICT

New Pinhole

- Complementary beam size measurements for SR
- It will use light from bending magnet at FE21
- Al Window design finished

Water cooling design and heat load studies

Integrating Current Transformer

- Alternative beam current measurements at SR (DCCT)
- Pioneer tool for Light Sources (Bergoz)
- Ready for installation during winter shutdown

Magnetic measurements lab.

- 3D HELMHOLTZ BENCH
- Determine 3d hall probe orthogonality
 - Accuracy down to 2mrad
- FLIPPING and ROTATING COIL
- Measure small gap multipolar magnets
 - Flipping down to 6mm gaps
 - Rotating down to 11mm gaps
- NEW HALL PROBE BENCH
- Measure close structures
 - Now: gaps down to 4.5mm
 - In the future: gaps down to 3mm in vacuum and cryogenics

Thanks to the Accelerator Division...

... and to ALL other divisions!

XXVII ESLS Workshop ALBA Status November 28th 2019