

Status of the MAX IV storage rings

Å. Andersson on behalf of the MAX IV team

XXVII ESLS Meeting at ALBA, Barcelona 2019

Outline

- Coarse Overview: What's new since last ESLS on the two storage rings.
- 2019 Statistics
- Some highlights

1.5 GeV Ring Delivery One Year Ago

1.5 GeV Ring Delivery Today

- I = 400 mA; $I*\tau = 6 \text{ Ah}$ (friendly gaps/phases)
- No BbB feedback, Harmonic Cavities do the job
- 5 ID beamlines in user operation

1.5 GeV Ring – Achieved Performance

		1.5 GeV Ring		
		Design Goal	Achieved	Obs
\odot	Energy [GeV]	1.5	1.5	
				500 mA delivery to beamlines first demonstrated in
			500/400	Spring 2018 . Regular delivery currently limited by
	Multi-bunch Current [mA]	500		request from beamlines at 400 mA
				Only Multi-bunch mode in normal delivery, single-bunch
				delivery starts oficially in winter 2020, Initial tests with
	Single-Bunch Current [mA]	16	90	beamlines in autumn 2019
©	Horizontal Emittance (bare lattice, low current)			
	[pmrad]	6000	6100 ±500	Estimated maximum systematic errors
©	Vertical Emittance (bare lattice, low current)			
	[pm rad]	60	15 ± 2	Estimated maximum systematic errors
\odot	Orbit stability [% of beam size]	<10% RMS	< 2.3% RMS	Does not include transients due to ID motion.
\odot	Top-up Mode	Yes	Yes	

- Achieved Design Goal
- © Exceeded Design Goal
- Not Achieved Design Goal

3 GeV Ring Delivery with HC, starting 8th Nov 2018

Delivery shift: 150 mA top-up every half hour,
I*Tau ~ 3 Ah with Harmonic Cavities

- Earlier, we delivered with help of a BbB feedback system acting longitudinally against HOM driven Coupled Bunch Instabilities,
 I*Tau ~ 2 Ah
- 3 ID beam lines was in user operation

3 GeV Ring Delivery with HC, Today

- I = 250 mA; $I * \tau = 3 \text{ Ah}$
- We still deliver without help of a BbB feedback, but with a separate Robinson-mode feedback (implemented by David McGinnis).
- 6 ID BLs commissioned; 2 ID BLs awaiting rad. permit.

3 GeV Ring – Achieved Performance

		2 2 112		
		3 GeV Ring		
Parameter	Design Goal	Achieved	Obs	
Energy [GeV]	3	3		
			500 mA demonstrated in Autumn 2018 with	
			undulator gaps open and HCs detuned. Limited to	
Multi-bunch Current [mA]	500	500/250	250 mA for routine delivery by available RF power	
			Only multi-bunch mode in normal delivery, single-	
Single-Bunch Current [mA]	2.8	9	bunch used for accelerator experiments	
Horizontal Emittance				
(bare lattice, low current) [pmrad]	330	320 ± 18	Estimated maximum systematic errors	
Vertical Emittance				
(bare lattice, low current) [pm rad]	8	6.4 ± 0.9	Estimated maximum systematic errors	
		HOR < 2 %		
Orbit stability [% of beam size]	< 10 %	VERT < 5 %	Does not include transients due to ID motion.	
Top-up mode	Yes	Yes		

- Achieved Design Goal
- © Exceeded Design Goal
- Not Achieved Design Goal

Since we are in the IBS regime, Hor.Emitt. Vert. Emitt. & Rel. Energy spread are increased 10 to 15 % during delivery at 250 mA (depending on HC tuning).

Outline

- Coarse Overview: What's new since last ESLS on the two storage rings
- 2019 Statistics
- Some highlights

3 GeV Ring: Yearly Scheduled Beam Delivery Hours

Slide by Pedro F. Tavares

Year-to-date statistics: 1.5 GeV ring

UPTIME: 98.4 % MTTR: 1.1 h MTBF: 65.3 h

Most downtime (60 out of 82 hours) accounted for by:

- INFrastructure, water cooling circuits belonging to the site owner.
- MAGnets, PS failure of corrector magnets & a burnt main breaker (was flown from Stockholm and installed in the night).
- OThers, two unexplained successive beam losses killed the dose limit, wait 4 hours.
- Beamlines, while bringing new BLs online fast, BL issues triggers the RF dump & occationally the dose limit.
- NETwork, two instances of faulty cables.

Year-to-date statistics: 3 GeV ring

Most downtime (71 out of 111 hours) accounted for by:

- RF, issues with L-cav running the wrong way (solved) & failures in individual modules in transmitters.
- ConTrols, critical servers becoming unreachable.
- MAGnets, PS failure of one sextupole. Difficult to find since PS reported output.
- Beamlines, while bringing new BLs online fast, BL issues triggers the RF dump.

UPTIME: 97.3 % MTTR: 1.1 h MTBF: 40.8 h

Outline

- Coarse Overview: What's new since last ESLS on the two storage rings
- 2019 Statistics
- Some highlights

Highlights 1.5 GeV Ring

First Single-bunch delivery to beamlines

Thanks to Paul Goslawksi and the BESSY team

TRIBs

90 mA in a single-bunch (F. Cullinan, J. Breunlin)

Presentation tomorrow by David K. Olsson

Pictures by D.K.Olsson

Highlights 3 GeV Ring: Orbit Stability

Average of 13 long straight flanking BPMs April 2019, 250 mA beam current

Plot By Jonas Breunlin

Integrated up to 5 kHz

- ☐ Horizontal RMS < 2.0 % of RMS beam size
- ☐ Vertical RMS < 5.0 % of RMS beam size

Highlights 3 GeV Ring: Orbit Stability

Despite the good results:

- ☐ A "pilot" Fast Orbit Feedback System will be integrated to the SOFB, around one ID straight, during Christmas (Magnus Sjöström).
- ☐ Main goal is to eliminate orbit transients from ID gap movements.

Highlights 3 GeV Ring: Multipole Injection Kicker (MIK)

- Objective: achieve near transparent top-up injection.
- Joint project with SOLEIL based on original concept from BESSY.
- First prototype installed in summer 2017.
- Final device installed summer 2019.

Engineering Design & Construction by SOLEIL P.Lebasque P.Alexandre

Injection with the MIK

Residual Stored Beam Perturbations

Transverse beam profile measured at diagnostic beamline while pulsing the MIK.

Values scaled to the centre of the long straight

Residual Stored Beam Perturbations

Transverse beam profile measured at diagnostic beamline while pulsing the MIK.

Values scaled to the centre of the long straight

- The exposure of the cam is synchronized with the MIK pulse, duration 20 to 40 μs
- The vertical disturbance decays roughly with the vertical damping time 30 ms
- → Effective disturbance less than 25 % during the top-up period
- Turn-by-Turn data, to follow the centroid motion, will soon be performed. It will reveal if a dipole kick is involved, or if the blow-up origins from quadrupole fields

Is this the most transparent top-up presently?

Thank you!

Back-up slides

Did we use this in MAX IV?

Temperature measurements on MIK chamber (Air fan on/off) @50 mA

TCO positions (09 Jan 2019)

Courtesy of Alexey Vororozhtsov

Temperature measurements results (Air fan on/off) @50 mA

18:00

08/01/2019

18:05

18:10

18:15

18:20

18:25

18:30

18:35

Detailed view 1

I=50 mA, multibunch uniform fill

Bunch Length = 120 ps FWHM

17:00

17:05

17:10

16:55

08/01/2019

50

42

Temperature [°C]

Delivery, 250 mA, top-up 2 Hz every ½ h, Old MIK

Measured beam sizes, 30 μ s exposure time, synchronized with MIK.

Hor. emittance

$$\tau_x = 16 \text{ ms}$$

460 -

440 -

We believe this is an IBS effect.

pm.rad

$$\tau_v = 30 \text{ ms}$$

Back-ups

Back-up slides

Measured Energy Acceptance

Figure 6: Result of momentum acceptance measurements for the two different non-linear optics. The measurements where taken at a beam current of 75 mA. The black solid line is the fitted results of a simulation in OPA corresponding to a gas lifetime of 95 h.

