DELTA: Status and future plans

Shaukat Khan, Zentrum für Synchrotronstrahlung

Cerdanyola del Vallès, Nov 28, 2019

Parameters and availability

Parameters

circumference 115.2 m beam energy 1.5 GeV

beam current beam current 20 mA single bunch ~13 h at 100 mA

hor. emittance ~16 nm rad bunch length 35 ps rms

user operation 2000 h/y (20 weeks/y) machine studies 1000 h/y (10 weeks/y)

(J. Friedl, G. Schmidt)

Parameters and availability

Parameters

circumference 115.2 m beam energy 1.5 GeV

beam current 130 mA multi-bunch beam current 20 mA single bunch

beam lifetime ~13 h at 100 mA hor, emittance ~16 nm rad

bunch length 35 ps rms

user operation 2000 h/y (20 weeks/y) machine studies 1000 h/y (10 weeks/y)

(J. Friedl, G. Schmidt)

Insertion devices

Insertion devices

(B. Beyer, W. Brembt, P. Hartmann, B. Hippert, S. Khan, V. Kniss, P. Kortmann, M. Paulus, D. Schirmer, G. Schmidt, C. Sternemann, M. Tolan + BINP team)

New superconducting wiggler delivered in July 2018

configuration: asymmetric \rightarrow symmetric

magnetic field $5.3 \text{ T} \rightarrow 7 \text{ T}$

periods $5 \rightarrow 9$

He consumption $130 \text{ l/week} \rightarrow \text{none}$

Insertion devices: Superconducting wiggler

RF upgrade

(W. Brembt, P. Hartmann, A. Leinweber, V. Kniss, T. Weis)

500 MHz European HOM-damped cavity

delivered and conditioned in 2018, problem with coupler installed in April 2019 operated since August 2019 after problem with probe window

$500 \ \mathrm{MHz}$ solid-state amplifiers

installed in 2017

- 75 kW for the storage ring
- 20 kW for the booster

coupler with defective window

75 kW solid-state amplifier

RF upgrade

(W. Brembt, P. Hartmann, A. Leinweber, V. Kniss, T. Weis)

500 MHz European HOM-damped cavity

delivered and conditioned in 2018, problem with coupler installed in April 2019 operated since August 2019 after problem with probe window

500 MHz solid-state amplifiers

installed in 2017

- 75 kW for the storage ring
- 20 kW for the booster

Digital low-level RF system

delivered in 2018 operated since August 2019 failure in October, bug fixed in November spare provided by KARA/KIT!

Alignment of the storage ring

(U. Berges, G. Dahlmann, T. Dybiona, B. Isbarn, B. Hippert, P. Kortmann, G. Pike**, H. Rast, G. Schmidt, T. Schulte-Eickhoff; **Faculty of Physics, TU Dortmund)

Vertical alignment

- completed in 2013
- significant improvement

Horizontal alignment

- completed in 2018
- further corrections

Orbit correction etc.

(A. Glassl, W. Helml, M. Jebramcik, S. Kötter, B. Riemann**, T. Weis; **now at SLS)

New orbit correction underway

- improved algorithm
- up-to-date software
- currently under test
- plan to integrate BE+d model(biliniear exponential + dispersion)

Tune shift with amplitude

- measurements in view of transverse resonant island buckets (TRIBs)

Orbit correction with artificial intelligence

(D. Schirmer)

Feedforward neural net (FFNN)

trained with random steerer settings orbit correction converges faster than SVD etc.

Model server

(A. Althaus, D. Schirmer)

Integrated into EPICS-based control system

- python-based
- using OCELOT, COBEA
- all parameters available as EPICS PVs
- GUI to visualize and set parameters

Different simulation modes using

- model parameters
- setup files
- real settings

Coherent harmonic generation (CHG)

- laser-induced energy modulation within a bunch "slice"
- density modulation in a magnetic chicane
- coherent radiation at harmonics of the laser wavelength (so far, 80 nm)

a) HGHG/CHG

Coherent terahertz (THz) radiation

- short "dip" due to energy-dependent path length
- broadband coherent THz radiation
- narrowband coherent THz radiation from multiple dips

Echo-enabled harmonic generation at DELTA

Supported by Helmholtz ARD initiative (FZ Jülich)

- modulators: 2 short undulators
- radiator: present U250 undulator
- requires 20 m long straight section
- modified storage ring optics
- additional undulator for "femtoslicing"
- G. Stupakov, Phys. Rev. Lett. 102, 074801 (2009)
- D. Xiang et al., Phys. Rev. Lett. 105, 114801 (2010)
- Z. T. Zhao et al., Nature Photonics 6, 360 (2012)
- E. Hemsing et al., Nature Photonics 10, 512 (2016)
- P. R. Ribič et al., Nature Photonics 13, 555 (2019)

Courtesy Scanditronix AB

b) EEHG

Off-axis seeding at the second undulator harmonic

- laser-induced energy modulation follows spontaneous undulator radiation

calculations using SPECTRA

H. Tanaka and H. Kitamura, Journal of Sync. Radiation 8, 1221 (2001)

A. Meyer auf der Heide et al., Proc. FEL 2019, Hamburg, paper TUP080

Off-axis seeding at the second undulator harmonic

- laser-induced energy modulation follows spontaneous undulator radiation

first and second harmonic (K = 10.2)

Off-axis seeding at the second undulator harmonic

- laser-induced energy modulation follows spontaneous undulator radiation

Off-axis seeding at the second undulator harmonic

- laser-induced energy modulation follows spontaneous undulator radiation

Coherent emission of Terahertz radiation

- diagnostics of laser-electron interaction
- short laser pulse: broadband THz radiation
- long modulated pulse: narrowband THz radiation
- sub-THz signal after 1/2 and 1/1 synchrotron period

C. Mai et al., Proc IPAC 2015, Richmond/USA, 823

Coherent emission of Terahertz radiation

- diagnostics of laser-electron interaction
- short laser pulse: broadband THz radiation
- long modulated pulse: narrowband THz radiation
- sub-THz signal after 1/2 and 1/1 synchrotron period

- S. Bielawski et al., Nature Physics 4, 390 (2008)
- C. Evain et al., PRST-AB 13, 090703 (2010)
- P. Ungelenk et al., PRAB 20, 020706 (2015)

Accelerator physics in the bachelor and master curriculum

Bachelor, master, docorate theses

One-semester course on instruments (lasers, accelerators, detectors ...)

- 2 hrs lecture
- 1 hr exercises

Two-semester accelerator course

- 2 hrs lecture
- 1 hr exercises
- 1 hr seminar
- field trips (Berlin, Hamburg, ...)

The Future of DELTA

Last workshop on February 20, 2018

The next 10 years

- consolidation and improvement
- 7-T wiggler and RF upgrade
- EEHG short-pulse source

MERCUR grant to develop an electron source for ultrafast electron diffraction (UED@DELTA)

- 2 PhD positions (Dortmund and Duisburg-Essen)

The Future of DELTA

Last workshop on February 20, 2018

The next 10 years

- consolidation and improvement
- 7-T wiggler and RF upgrade
- EEHG short-pulse source

... and beyond

Thank you very much / Moltes gràcies

Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen

