

[Mysterious] vertical beam size

measurements using iXD at ALBA

Andriy Nosych
Ubaldo Iriso

The ALBA machine provides:

The idea behind IXD:

ALBA Crotch absorbers

Ray tracing shows that radiation from previous dipole does NOT pass by the IXD, so we are looking at a single photon source

How it looks like

Storage ring sectors: 16 Dipoles per sector: 2 Absorbers per dipole: 4

Given the space constraints, there are <u>2 possible IXD</u> <u>locations</u> at the end of each sector. We choose the one closer to the source (second dipole).

ALBA Green-paper study

www.cells.es 16/06/2015 A. Nosych

Prelude®420

Chemical composition: Lu_{1.8}YO_{.2}SiO₅:Ce

Light yield: 32 photons/keV

Decay time: 41 ns

Scintillation emission wavelength: 420 nm Available size: 1" x 0.8 mm, 1 mm, 2 mm

CRY19 a silicate single crystal for X-ray detectors.

Chemical composition: unknown

Light yield: 28 @300K [10³Ph/MeV]

Decay time: 41 ns

Scintillation emission wavelength: 420 nm

Available size: 1" x 1 mm

Photon absorption by common scintillators (0.8 mm thick) Simulation by XOP

Theory & expectation

Vert e-beam size at source (inside dipole): 24 um (σ_e)

Vert e-beam size seen by pinhole: 23 um (σ_e)

Vert e-beam divergence at source (LOCO): 1.6 urad (α_e)

Photon divergence (XOP simulation) at IXD location: 26 urad (α_{ixd})

Expected vertical <u>photon</u> beam size at IXD:

$$\sigma_{photons,ixd} = \sqrt{(\sigma_e)^2 + R^2(\alpha_e^2 + \alpha_{ixd}^2)} = 48 \text{ um}$$

Best IXD shots (@10s)

Typical pinhole image

IXD images

The teeth imprint

www.cells.es 16/06/2015 A. Nosych

ALBA Current status (@1s)

FOV: around 18 x 13 mm

xposure: 1

1000

1200

513BM2-3

Measured photon beam size is quite far off the expected value.

Photon divergence corresponding to the measured values is: 32-47 urad Copper thickness corresponding to this divergence: <5 mm !!!

ALBA Coupling scans

www.cells.es 16/06/2015 A. Nosych

ALBA Coupling scans

Screen materials test

	Lin	PSF*	R ²
PL 2mm (1s)	1	25	.984
PL 2mm (5s)	1	27	.992
CR 1mm (1s)	0.8	32	.934
PL .8mm (1s)	1.2	17	.996

Sensitivity to remaining flux > 130 keV (most to least):

PreLude (2 mm)
CRY19 (1mm)
PreLude (0.8 mm) ← cleanest
measurements

What is enlarging our beam?

Penelope & Fluka simulations

to evaluate the PSF enlargement by secondary emission

Penelope:

Secondary <u>electrons</u> tracking ON produced 0.1% more beamsize w.r.t to tracking OFF

Fluka:

Secondary Cu <u>photons</u> (K_alpha) tracking ON produced 0.2% more beamsize w.r.t. to tracking OFF

Neither are able to predict the PSF enlargement of IXD

ALBA Vertical bumps

Bumps of 50-100-200-300 um are detected well by the IXD (calculating the difference in Gaussian centroids)

www.cells.es 16/06/2015 A. Nosych

- We see a linear correlation between beam size measured by IXD and Pinhole
- There is a linear offset which is not understood:
 - Optics effect? (DOF checked, pixel size calibrated)
 - Secondary emission? (checked by tracking simulations: Fluka, Penelope, which explain the negligible enlargement by secondary photons and electrons)
 - Other?
- IXD measurements with different screen materials: results are similar but measure different beam sizes, intensities, and have different sensitivity to high energy x-rays.
- IXD measurements in different but geometrically-identical machine sectors show difference in photon intensity and IXD image shape.
- Difficult to get to sub-second measurement due to overall low residual flux (absorbers are doing a good job).
- Difference in attenuation by identical absorber is not fully understood as well

Thank you!

ALBA Motorized setup (fail)

More absorption

ALBA Coupling scans

Backup: IXD calibration

Pixel size calibration

DOF test (typically 1 mm) so focusing on either side of the screen is OK

Calibration can be cross-checked online by looking at the shadow of marks (if visible, especially at high CCD exposures)