Challenges for emittance diagnostics for the ESRF low emittance lattice

Friederike Ewald

The ESRF will install a new low emittance lattice from 2019 onwards. The horizontal design emittance of ε_x = 110 pm will give rise to a very small vertial emittance which in the extreme/ideal case of a perfectly well corrected machine may reach values of ε_z below 1 pm.

The measurement of such emittances is a challenge for mainly two reasons:

- the small source beam sizes and
- 2. the very limited space available in the mechanical layout of the new lattice.

Available dipole source points for emittance monitors

2

Possible dipole source positions in a SR cell

Expected vertical emittances and beam sizes @ DL1A_5

 $\varepsilon_{x} = 110 \, pm$

 σ_{x} @ source = 11 μ m

 $\Sigma_{\rm x}$ in image plane = 48 $\mu{
m m}$

		Perfectly corrected lattice	User Service Mode
coupling		0.001	0.047
$\sigma_{\rm z}$ @ source	μm	1.4	9
\mathcal{E}_{Z}	pm	0.1	5
$\mathit{\Sigma_{z}}$ in image plane	μm	6	40

Pinhole/lens position option 1 (DL1A_5) - ID beam port

X-ray Pinhole

Resolution determined by:

- 1. diffraction from pinhole (minimum pinhole size)
- 2. projection shadow (upper limit of pinhole size)

Detectability limited by:

- 1. beam size on detection screen (magnification M = D/d)
- 2. photon flux

Pinhole: optimum size and resolution

Optimum pinhole size = equilibrium between diffraction limit and projected shadow:

$$A_{opt} = \sqrt{\sqrt{3} \frac{\lambda dD}{d+D}} = 10 \ \mu \text{m} \quad [*]$$

Minimum resolvable beam size and emittance using pinhole with A_{ont} :

$$\sigma_{\min} = \sqrt{\frac{\lambda d}{2\sqrt{3}} \frac{D+d}{D}}$$
 $\varepsilon_{\min} = \frac{\sigma_{\min}^2}{\beta}$

Implementation at DL1A 5 source:

$$(B = 0.67 \text{ T}, \beta_7 = 16.6 \text{ m}, \beta_8 = 1.5 \text{ m}, d = 3.76 \text{m}, D = 16.35 \text{ m})$$

$$\sigma_{min}$$
 = 5 μ m \rightarrow $\varepsilon_{z, min}$ = 1.5 ρ m \otimes (O.K. for USM)

$$\varepsilon_{x, min} = 16.0 pm$$
 © O.K.

[*] Note from P. Elleaume

X-ray lens

Resolution determined by:

- 1. diffraction limited imaging resolution of the lens
- 2. lens abberations
- 3. imperfections of monochromator
- 4. depth of field (object plane)

Detectability limited by:

- 1. beam size on detection screen (magnification M = D/d)
- 2. photon flux

CRL: theoretical resolution limit

Minimum resolvable source size:

 $(A_{eff}: effective lens aperture = f(E_{ph}, N)$

$$\sigma_{\min} = \frac{\lambda d}{2A_{eff}}$$

Implementation at DL1A 5 source:

 $(B = 0.67 \text{ T}, \beta_z = 16.6 \text{ m}, \beta_x = 1.5 \text{ m}, d = 3.76 \text{m}, D = 16.35 \text{ m})$

Photon energy optimised on maximum transmitted flux. (Number of lenses N adapted to each photon energy.)

$$\sigma_{min}$$
 = 0.25 μ m

$$\varepsilon_{z,min} = 0.003 pm$$

BUT in reality???

- lens quality?
- monochromator?
- depth of field effects?

X-ray Fresnel diffraction from a slit

Resolution determined by:

- 1. photon energy
- 2. slit size
- 3. simulations
- 4. imperfections of monochromator

Detectability limited by:

- 1. beam size on detection screen
- 2. photon flux
- 3. CCD camera: high contrast, high resolution

References:

[1] M. Masaki et al., "X-ray Fresnel diffractometry for ultrlow emittance diagnostics of next generation synchrotron light sources", PR Special Topics – Accelerators and Beams, 18, 042802 (2015)

[2] O. Chubar, "X-ray interference methods of electron beam diagnostics", Proceedings DIPAC 2001, Grenoble, p.88, CT09

X-ray Fresnel diffraction from a slit

Optimum slit size for obtaining a « simple » double-lobed diffraction pattern [1]:

$$a \approx \sqrt{7\lambda \frac{dD}{d+D}}$$

Simulations with SRW for the ESRF low emittance lattice:

$$d = 3.76 \, m$$
 $D = 16.35 \, m$ $E_{beam} = 6 \, \text{GeV}$ $A = 200 \, \text{mA}$ $E_{ph} = 40 \, \text{keV}$ $E_x = 0.11 \, \text{pm}$

[1] M. Masaki et al., "X-ray Fresnel diffractometry for ultrlow emittance diagnostics of next generation synchrotron light sources", PR Special Topics – Accelerators and Beams, 18, 042802 (2015)

X-ray Fresnel diffraction from a slit

Simulations with SRW for the ESRF low emittance lattice:

Conclusions

$$\varepsilon_{\rm x}$$
 = 110 pm $\sigma_{\rm x}$ @ source = 11 μ m $\Sigma_{\rm x}$ in image plane = 48 μ m

		Perfectly corrected lattice	User Service Mode
coupling		0.001	0.047
$\sigma_{\!\scriptscriptstyle z}$ @ source	μm	1.4	9
\mathcal{E}_{z}	pm	0.1	5
$\mathit{\Sigma_{\mathrm{z}}}$ in image plane	μm	6	40
	X-ray dij	ffraction X-ray len	S Pinhole

Positive: X-ray pinhole, lens, X-ray diffraction can be done at the same location, no special beamline or setup needed!

Requirements for energy spread measurement:

2 locations s_1 and s_2 of horizontal beam size measurement with η (s_1) < η (s_2)

$$\rightarrow \eta_1$$
 @ DL1A_5 = 0.0015 m
 $\rightarrow \eta_2$ @ DQ1D = 0.0126 m

Contribution of dispersion to the total beam size at the source:

		DL1A_5	DQ1D
σ_{tot}	[μ m]	13	17
$\sigma_{ extit{disp}}$	[μ m]	1.4	12
$\sigma_{ extit{disp}}/\sigma_{ extit{tot}}$	[%]	11	70

$$\rightarrow$$
 Energy spread calculated from the two measured beam sizes σ_1 and σ_2 :

$$\sigma_{e} = \sqrt{\frac{\beta_{2}\sigma_{1}^{2} - \beta_{1}\sigma_{2}^{2}}{\beta_{2}\eta_{1}^{2} - \beta_{1}\eta_{2}^{2}}}$$