

Elettra Sincrotrone Trieste

FERMI: an overview with insights on Optical Timing System & Longitudinal Diagnostics

Elettra Sincrotrone Trieste

Mario Ferianis on behalf of Diagnostics and Timing group

mario.ferianis@elettra.eu

ELETTRA and **FERMI**

FERMI: seeded FEL

Figure 1 | Scheme for a single-stage HGHG. In a two-stage cascade, harmonic radiation from the first stage is used as an external seed for the second stage. λ , seed wavelength; λ_{u} , modulator period; n, narmonic number.

NATURE PHOTONICS | VOL 7 | NOVEMBER 2013 | www.nature.com/naturephotonics

FREE-ELECTRON LASERS

Fully coherent soft X-rays at FERMI

The Italian free-electron laser, FERMI, now generates coherent soft X-rays in the water window (2.3–4.4 nm) by two-stage frequency upconversion of ultraviolet seed laser pulses using the 'fresh bunch' technique.

Toru Hara

FERMI layout

Electron linear accelerator tunnel

Undulator hall

FEL -1: Single stage cascaded FEL

full specs achieved in 2012, dedicated to user experiments

Continuously tunable in the range 20-100nm

Bandwidth **5x10**-4@ **32 nm** Energy per pulse 30-100 uJ (depending on wavelength up to a factor 3 more relaxing spectral purity requirements)

FEL-2: Double stage, fresh bunch, cascade FEL

October 2012 @1.0 GeV: 14.4 nm & 10.8 nm ≈50 uJ @10.8 nm March 2013 @1.23 GeV: wavelength range down to 8 nm

June 2013 @1.4 GeV: down to 5 nm

FERMI: LINAC and Undulator Hall

Linear Accelerator LINAC

Q = 1nC

Frep = 50Hz

Why Optical?

- e⁻ bunch length <500fs_{FWHM}
- to synchronize 100fs lasers
 - > photo-injector
 - > seeding
 - > pump-probe experiments
- facility extension (100s mt.)

Required **jitter & drift** on the distributed **Phase Reference:** ≈ **10fs**

First **User Facility** synchronized using exclusively fiber optics timing system

Hz Hz MHz

FERMI Optical Timing System

PULSED OPTICAL SYSTEM

Engineered and built by MENLO Systems, GmbH

A 2 year project, with on-site installation and testing.

In operation since Aug '09: only 2 faults on power supplies

Out-of-loop, long term (10 days) drift measurement;

Local optical reference vs.

150m loop-back stabilized link

@ @emcore TEC Cont

First accelerator Facility using entirely fiber optics timing system

- 36 delivery points
- 68 fiber bundles blown as
- ~4.5km of 8 S-M fiber bundles
- ~1.5km of 4 S-M fiber bundles

42km of S-M fibers **6km** of M-M fibers

To characterize the *longitudinal phase space* of the electron bunch: with fs resolution - in single shot (shot to shot, at 50Hz) - non destructively

- ► longitudinal profile (t_{FWHM} < 100s fs)
- ➤ arrival time and its variations (i.e. jitter) w. r. t. the phase reference
- relative **bunch length** variations
- electron energy distribution along the bunch

The RF deflector (@3GHz) allows 10s fs resolution, but it's destructive

The relative Bunch Length Monitor (BLM), it's non destructive

Two **NON DESTRUCTIVE** *electro-optical techniques* have been implemented:

- Bunch Arrival Monitor
- Electro-optical Sampling

Bunch Length Monitor (BLM)

Signal inverse proportional to the bunch length

Non destructive diagnostic (installed on BC1 and BC2)

Currently used in compression factor feedback

Based on two different detectors:

Coherent SR from 4th BC1 bend + PYRO

Field from Ceramic Gap + Schottky Diodes

Bunch Arrival Monitor (BAM)

Non destructive diagnostic

Based on concept developed at DESY (D)

Resolution=7fs

Installed on:

BC₁

BC2

FEL1 modulator

FEL2 modulator

Low Energy RF Deflector (BPM) Single-shot longitudinal profile and arrival time

Arrival time comparison as measured With EOS and BAM

E. Ferrari et al. Longitudinal Phase Space Characterization at FERMI@ELETTRA Proc. IBIC 2013, Oxford UK

Electro Optical Sampling (EOS)

Bunch length, profile and arrival time measurement system

Non destructive diagnostic

Resolution: 20fs

Used also for coarse alignment of seed laser pulse vs. electron bunch

Installed on FEL1 on FEL 2, in progress

Electro Optical Sampling (EOS) measurements

FERMI: an overview with insights on Diagnostics & Timing

Thank you for your attention