STORM 21/5/2015: tests of a new SY → SR transfer-efficiency measurement monitor

1) Hardware involved: - all (75) BPMs in Booster (Sparks)

- all (224) BPMs in SR (Liberas)

Signals & buffers involved: - Sum (of the 4 buttons)

- contains the amplitude of (ONLY) the 352.2MHz

- triggerable buffers of typically 300ms long

3) Synchronization: - all units (buffers) triggered by the same (pre-injection) trigger

- at a rate/period of 0.5Hz (2sec)

- read-out via the Tango "all"-servers

4) Calibration: - the Sums of Booster BPMs are calibrated with the SY-current monitor

- the Sums of SR BPMs are calibrated with the SR-current monitors

5) Performance: speed: @10Hz: 3 measurements per 2 sec (3 out-of-20 injections)

@ 1Hz: 1 measurement per sec

resolution rms:

SY: 0.01uA on typ. 400uA SY current in 5 bunch mode

SR: 0.05uA on typ. 60uA injected SR current in 16 bunch mode

6) Conclusion & next steps

frequency spectrum from a capacitive button of BPMs: the amplitude of the 352.2MHz spectral line is:

- -- always present
- -- proportional to the Current in the Ring

frequency spectrum from a capacitive button of BPMs: the amplitude of the 352.2MHz spectral line is:

- -- always present
- -- proportional to the Current in the Ring

RF input frequency sweep from 351.16 to 352.24MHz, i.e. 352.2MHz +/- 40KHz, in 80 steps of 1 KHz, at 1 sec interval Spark-ADC frequency is fixed at 108.062.532Hz

buffer data of a single BPM station

green dots: raw data

red dots: data used for averaging & measurement

blue dots: data used for offset measurement/compensated

green dots: raw data

red dots: data used for averaging & measurement

blue dots: data used for offset measurement/compensated

The transfer of all that data via Tango 75 x 3330 (Sparks) and 224 x 1660 (Liberas) can not be handled at a few Hz → loss of synchro 0.5Hz (2sec) looks feasible so far perhaps improvements possible . . .

Calibration of the Sum signals [a.u.] to real current values [mA]

Calibration of the Sum signals [a.u.] to real current values [mA]

for the SR is very easy: - current is very stable,

- no need for a very strict synchronization

- 3 PCTs are available, low noise, good linearity

for the Booster it is more tricky: - the real SY current fluctuates a lot (from shot-to-shot)

> - the SY-current monitor output is (so far) not synchronisable with the BPMs (0.5Hz trigger)

- the SY-current monitor has limited precision/resolution

empiric solution: measurement sequence over many, many shots, take the average of all the SY-current readings take the average of all the values of the SY-BPMs

division: 440 nA / a.u

STORM 21/5/2015: tests of a new SY → SR transfer-efficiency measurement monitor

Performance: speed: @10Hz: 3 measurements per 2 sec (3 out-of-20 injections)

@ 1Hz: 1 measurement per sec

resolution rms:

SY: 0.01uA on typ. 400uA SY current in 5 bunch mode

SR: 0.05uA on typ. 60uA injected SR current in 16 bunch mode

Next steps:

- tests with different filling modes
- tests with very small currents
- "life" matlab routine with graphics & figures (for operator)
- real application (ACU group)
- optimizing speed and repetition rate (?)

