

Kees Scheidt Diagnostics Group Accelerator & Source Division

the new ESRF low-emittance Storage Ring, the BPMs and the (Fast) Orbit Correction systems **DEELS Workshop June 15-16 2015 Barcelona**

congratulations to the Tri-Campeones!

consolation to the losers!

football is . . .

love love ..

I DEELS

OUTLINE

The Low-Emittance Ring: motivation

constraints & time-schedule

challenges & difficulties

Diagnostics upgrade (?): more BeamLoss Detectors → all (128) should be both fast & sensitive

more BPMs (from 7 to 10 per cell): but NOT better . . .

emittance monitors (X-ray pinhole): see talk Friederike

FOC and current monitors : "copy-paste" today's versions

BPMs in details: Buttons: results & surprises on prototypes, C-f-T in process

Blocks: 2 geometries

RF connections & accessibility aspects

Electronics:

- recuperate the existing Liberas-Brillance (today >6years)

- add a sufficiently good system . . . for the extra BPMs

Spark ERXR:

some preliminary tests

LOW-EMITTANCE RING AT THE ESRF

Motivation:

reduce the horizontal emittance from 4nm to 0.15nm

beam-line experiments can benefit from an increase in brilliance

Also, the <u>coherence</u> (the coherent fraction, in hor.plane) will increase

LOW-EMITTANCE RING AT THE ESRF

when: 2019 → the full year to <u>dismantle the old ring</u> and to <u>install the new</u>

major constraint: keep all X-ray beamlines at the same location

and: keep all Users happy until last day (19th dec 2018)

DECOMMISSIONING OF THE EXISTING STORAGE RING

Proposed material release plan

Compliance with the clearance levels defined in the Council Directive 2013/59/EURATOM

Surface dose measurements (indistinguishable from background)

$$\sum_{all \ isotopes} \frac{AS_i}{SE_i} \leq 1$$

guaranteed for 1 cm³ hotspots.

ESRF LOW-EMITTANCE RING: THE CHALLENGES: GIRDERS & TRANSPORT

CHALLENGES: A TOTAL OF 14 COMPLEX VACUUM CHAMBERS PER CELL

LOW-EMITTANCE RING: CHALLENGES: THE MAGNETS AND TOLERANCES

> 1000 Magnets to procure & handle in < 3 years

528 Quadrupoles

196 Sextupoles

BPMS & FOC: COPY & PASTE + SOME NEW ELECTRONICS

Reminder of today's systems:

today's FOC:

7 BPMs (Liberas) per cell 3 Fast Steerers per cell all in a dedicated 10KHz (Fast) network for the FOC with dedicated broadcasting protocols, FOC processors Tango-servers, timing network, additional nodes, etc.

FAST & SLOW ORBIT CORRECTION: 6 LIBERAS & 4 SPARKS PER CELL

X-ray beam stability for users will be identical to that of today

WP-7 DIAGNOSTICS & FEEDBACKS: 6 LIBERAS & 4 SPARKS IN THE CELL

4 new electronics per cell = 128 units in the Ring :

a candidate: Spark ERXR is an upgrade

from the 75 Sparks used in the new Booster BPM

- Variable RF attenuators

- PLL (software)

compared to Liberas these Sparks have NOT implemented:

- Fast-10KHz output,
- Interlock.
- Post-Mortem.
- Hi-stability / self-calibration mechanism (RF-mux + DSC)

yet, their natural stability / reproducibility (24hrs drift etc.) is expected within +/- 2 um [see measurements]

both have full functionality for Turn-by-Turn measurements (injection & lattice studies) both have same sensitivity and noise characteristics [to be confirmed]

still to be added: nm output, 32bit DDC processing, offset-tune (Aug.2015)

Libera vs Spark:

how to compare what?

- 1) T-b-T data (1MHz BW) sensitivity (for ultra-low currents)
- 2) FA-data (TUKHz) not available (Spark)
- 3) Dec64 data (5KHz)
- 4) Short term stability (sec. min.)
- 5) Longer term stability (e.g. 10hours)

Libera vs Spark:

Phase/Space* plots from Turn-by-Turn data (at 0.1mA, single-bunch)

3m RF cable, Time-Domain-Processing

SPARK VS LIBERA: NOISE, DRIFT, REPRODUCIBILITY

SPARK: NO OFFSET TUNE YET, BUT POOR MAN'S OFFSET-TUNING

SPARK & LIBERA: ADC IN 4 BUNCH MODE

data from Libera with standard DDC

data from Spark with TDP, but filter fully open (304)

SPARK & LIBERA: DRIFT OVER 10 HRS (4 BUNCH FILLING MAY 2015)

Current variation: 43 to 27mA, decay of 37%

SPARK: DRIFT IN 13 MINS (4 BUNCH FILLING MAY 2015)

Spark:

rms X = 43 nm

rms Z = 123 nm

Libera:

rms X = 67 nm

rms Z = 73 nm

SPARK: NOISE IN 30 MILLISEC (4 BUNCH FILLING MAY 2015)

Spark:

rms X = 334 nm

rms Z = 315 nm

Libera:

rms X = 723 nm

rms Z = 1000 nm

Libera vs **Spark**:

how to compare what?

T-b-T data (1MHz BW) sensitivity (for ultra-low currents)

- 2) FA-data (10KHz)
- 3) Dec64 data (5KHz)

Spark at least as good

Short term stability (sec. - min.)

Spark at least as good

5) Longer term stability (e.g. 10hours)

Spark drifts with beam-current but +/- 1um for 37% decay

> very long time-drifts or non-reproducibility not (yet ?) observed

when injecting from 0 to full nominal current (e.g. 200mA) then Liberas take care of attenuation changes & calibration, with Sparks you have to calibrate yourself . . .

BPM BUTTONS

prototype tests fully satisfactory

C-f-T document is written

soon to be launched

delivery (1500 units) expected by end 2015

total costs < 400 KEuros

WHERE IS THE CHARGE IN THAT BIG "OMEGA" BPM ???

geometry of the BPM nos. 1, 2, 3 & 8, 9, 10

BPM GEOMETRY, **MAPPING**, **BUTTON DIAMETER**

mapping is done, optimization of button diameters (for RF signal strength) 6mm 8mm **BIG** 6/10 4mm 6mm **small** 4/10

NO HEATLOAD (RF-TRAPPED MODES) ISSUES MEASURABLE !!

installed in Aug. 2014

Kz = 12.4

Side-view

rough estimation of the effect of a protruding button on its RF-signal pick-up sensitivity

(Eric, using the CST-tool)

cut-up this chamber and measure the real 12 protruding / retraction values

consequences of <u>mechanical tolerances</u> (<u>on button only</u>) for the <u>Electrical Offsets</u> of the BPM Block

BPM BLOCKS, **SUPPORT & FIXATION**

longitudinally free

pin for lateral pre-alignment

BPM BLOCKS, SUPPORT & FIXATION

fully fixed

NSLS-2

to be attached to the chamber?

this cable installation will be done BEFORE installation of the vacuum chamber into the magnets and can, in principle, NOT be manipulated after that

