

Maintenance program in the cooling circuit. DW case

Juan José Manotas

Engineering Division

Computerized Maintenance Management Syst.

Software PRISMA 3

For the <u>maintenance management</u> the commercial software **PRISMA 3** has been selected as the adequate CMMS (Computerized Maintenance Management System). Functions:

Installation description implemented in 6 levels: Facility, Building, Zone, Installation, Asset (main) and Element (part of Asset)

Work Order Example

Work Procedure Example

Range Document: GABC example

Gama

Oficio

Harramianta

Fecha Últ.Modif.

LIBRO DE GAMAS

Página 1 / 118

Range code

GABC

GAMA ANUAL BATERIA CONDENSADORES

Tiempo Parada Previsto

1:30

Specialization

Oficios

04/03/13 15:50

Nº Operarios Previstos Tie

Tiempo Previsto

Too Feedback Herram

1:30

Herramientas

Tools

nerramenta	TPO. Peeuback Helfalli.		
01 - CASCO / GORRA DE SEGURIDAD	1:30		
02 - TAPONES	1:30		
03 - GAFAS DE PROTECCIÓN	1:30		
04 - MASCARILLA HOMOLOGADA	1:30		
05 - GUANTES DE TRABAJO MECANICO/ELECTRICO	1:30		
20 - CÁMARA TERMOGRÁFICA	1:30		

	1	_		m	_	_
- 1	M		П	п	а	S

Norma

NPSEGUR - NORMA SEGURIDAD EPIS

EPI's obligatorias para realizar el trabajo: 1.Casco/Gorra de Seguridad, 2. Tapones, 3. Gafas de Protección, 4. Mascarilla antipolvo, 5. Guantes de trabajo Mecánico/Eléctrico

NPABC - NORMA PREVENTIVA ANUAL BATERÍA CONDENSAD

- Rellenar la tabla de mediciones adjunta.
- 02.- Revisar que no existe nivel de polución interno en la batería, manteniendo limpios los bornes y aisladores de los condensadores.
- 03.- Comprobar el correcto funcionamiento de todos los condensadores y revisar su consumo.
- 04.- Comprobar que los contactores realizan las maniobras de forma correcta.
- 05.- Revisar los elementos de protección.
- 06.- Efectuar reapriete de conexiones y realizar termografía.
- 07.- Comprobación de la correcta compensación del cos-fi.

Work Order generated by schedule

(Preventive and Corrective Maintenance)

Internal and Outsourced services schedule

Work order feedback tool

Work Order Measurement

En cas que estigui per sota d'aquest nivell, caldrà revisar que la bomba dosficadora estigui funcionant correctament i que els bidons de biocida tenen producte químic.

Work order is generated to measure criticals points in the installation. That are not yet automated.

Ex.: Operation to adquired the data.

More tha 8300 measures (with many meters) in differents equipments was done.

Work Order generated by indicator

Spare parts

Managed by Prisma3 (CMMS).

Different Families: 1.849 (bearings,

filters, screw, seals, etc)

Quantity of items: 24.310

StoreShelf (positions): 3.666

StockMov: 15.920

Stocks Work Flow

Maintenance Key figures

A total of 3830 Assets

Assets: 3800

Preventive Work Order: 49.909

Corrective Work Order: 13.885

63.794 **Total Work Orders:**

Planning Task simulated: 183.401

Number of Measurements performed: 8.321 (assets measure)

Work Type Reported Graphic (time)

All figures are since we launched application, (gen-2012)

Water Cooling Systems Pumps

Water Cooling Systems and Distribution (4 circuits)

- Hot water at 50±0,5°C used for comfort air conditioning.
- 2. Cold Water at 7±0,5°C, used mainly for HVAC (air conditioning) and cooling
- Deionized water at 23±0,2°C, to refrigerate science equipment's and accelerator rings.
- 4. Cooling towers for chillers and Free-Cooling.

Water Pumps

Some pumps pictures from differents areas

Deionized Water Pumps 23°C

Hot Water Pumps 50°C

64 Main
Pumps of
different sizes

Cooling Tower Water Pumps 25°C

Cooling Production
Water Pumps 7°C

HVAC and Cooling Water Pumps 7°C

Pumps Predictive Maintenance

Reference Standard Severity ISO 10816

Pumps Predictive Maintenance

Results Pumps Vibration Analysis

Measurement on more than 60 Pumps

Report of 6 years of measures

EQUIPO	AREA	2013	2014	2015	2016	2017	2018
EQUIPO	AREA	OCT	SEP	SEP	SEP	AGO	AGO
P02A	TORRES	3	3	3	3	3	3
P02B	TORRES	3	3	3	3	3	8
P02C	TORRES	3		3	3	3	3
P02D	TORRES	3	3	3		3	3
P02E	TORRES	3	3	3	3	6	8
P02F	TORRES	3	3	3	3	5	8
P02G	TORRES	3	6	3	3	3	
P02H	TORRES	3	3	3	3	3	8
P03A	INTER TORRES	3	3	3	3	3	
P03B	INTER TORRES	3	8	8	3	3	
P03C	INTER TORRES		3	3	3	3	
PO4A	TURBO COMPRESORES	3	3	3	3	3	3
P04B	TURBO COMPRESORES	3	3	3	3	3	3
P04C	TURBO COMPRESORES	3	3	3	3	3	8
P04D	TURBO COMPRESORES	3	3	3		3	3
P04E	TURBO COMPRESORES	3	3	3	3	3	3
P04F	TURBO COMPRESORES	3	3 3 3		3	3	3
P05A	GRUPO FRED CARGOL	3	3 3		3	3	3
P05B	GRUPO FRED CARGOL	3	3 :		3	3	8
P05C	GRUPO FRED CARGOL	3	3	3	3	3	3
P05D	GRUPO FRED CARGOL	3	3 3		3	3	3
P06A	DESIONITIZADAS	3	3 3		3	3	3
P06B	DESIONITIZADAS	3			3	3	3
P06C	DESIONITIZADAS	3	3 3		3	3	3
P12A	UTA'S TUNEL	3	3 3		3	3	3
P12B	UTA'S TUNEL	3 3		3	3	3	3
P14A	UTA'S EXP	3 3		3	3	7	3
P14B	UTA'S EXP	3 3		3	3	3	3
P15A	UTA'S LABS OFF	3 3		3	3	6	3
P15B	UTA'S LABS OFF	3	3	3	8	3	3
P15C	UTA'S LABS OFF	3	3	8	3	3	3
P16A	CIRCUITO PRIMARIO CALDERA	3	3	3	3	3	3
P16B	CIRCUITO PRIMARIO CALDERA	3	3	3	3	3	3
P16C	CIRCUITO PRIMARIO CALDERA	3	3	3	3	3	
P16D	CIRCUITO PRIMARIO CALDERA			3	3	3	3
P52	AGUA DEIONITZADA			3	3	3	
P50A	FRED EMERGENCIA			3	3	3	7
P50B	FRED EMERGENCIA			3	3	3	3

Major costs by type of equipment:

ELECT: Electric Motor and Pump

CLIMA: Heat, Ventilation and Air Conditioning, HVAC

TURVE: Turbine Extraction and Impulsion

TRAGU: Water treatments

etc...

12 Deionized water pumps

- Service Area: 3 Pumps (2 working + 1 backup)
- Booster Ring: 2 Pumps (1 working + 1 backup)
- 3. Storage Ring: 3 Pumps (2 working + 1 backup)
- 4. Experimental Hall: 2 Pumps (1 working + 1 backup)

3 pumps in the same bench

Maintenance Cost (only in 12 Deionized Water Pumps)

Meanwhile the time between repairs was decreasing

¡Yes, we had a problem with DW Pumps!

Only 2-3 months between big repairs!!!

MTBF by days

Asset	WO Number	MTBF
AP08-AEBOMB - BOMBA HIDRÁULICA P08A	1	547.50
ICWXXAP13-A - MEC1 - ELECTROBOMBA P13-A	3	273.75
IDWXXAP07-A - MEC1 - ELECTROBOMBA P07-A	12	84.23
IDWXXAP07-B - MEC1 - ELECTROBOMBA P07-B	4	219.00
IDWXXAP08-A - MEC1 - ELECTROBOMBA P08-A 7114747	10	99.55
IDWXXAP08-B - MEC1 - ELECTROBOMBA P08-B 7114739	18	57.63
IDWXXAP08-C - MEC1 - ELECTROBOMBA P08-C 7114754	16	64.41
IDWXXAP09-A - MEC1 - ELECTROBOMBA P09-A	6	156.43
IDWXXAP09-B - MEC1 - ELECTROBOMBA P09-B	9	109.50
IDWXXAP10-A - MEC1 - ELECTROBOMBA P10-A	17	60.83
IDWXXAP10-B - MEC1 - ELECTROBOMBA P10-B	11	91.25
IDWXXAP10-C - MEC1 - ELECTROBOMBA P10-C	11	91.25
IDWXXAP11-A - MEC1 - ELECTROBOMBA P11-A	7	136.88
IDWXXAP11-B - MEC1 - ELECTROBOMBA P11-B	7	136.88

Differents Problems:

The diagnosis and more questions:

Predictive Analysis: <u>Very high velocity values</u> for pump size and type.
 Maintained in time.

- 2. Consequently, high values occur in acceleration also and finally damage.
- 3. What about harmonic excitations?
- 4. The design of the bench is the best to avoid them?
- 5. What about of the <u>rigidity</u> of the bench (deformation amplitudes)?

Simulation, design, construction and test: New design of the bench

- We had the need to study the solution
- Bench simulation to discover natural frequencies in different vibration modes shapes.

Push the resonance modes to higher frequencies far away of the harmonic

3. Dynamic <u>Electro-pump loads</u> coinciding with a natural frequency, can cause <u>resonance</u>, the design looking for <u>push this frequencies far away</u> the natural ones and his harmonics.

Steel Base empty: f0=121 Hz

Steel Base fill (steel): f0=168 Hz

Applied solutions

- 4. Split the slab in two independent one for each pumping group.
- Concrete thick base
- Steel base plate

Construction and Test

Frame

Complete Frame ended

Concrete Filling

30 days of concrete setting

Shaker final test

Installation and commissioning

Cutting the concrete

Done

Moving the slab

Installation and commissioning

Waiting the New slab

New one

Moving the slab

Final position

Installation and commissioning

The next...

12 Pumps moving....dozens of tons

The results were as expected

Conclusions

- 1. This exercise it has been a very good example of how interact and work all together the multidisciplinary profiles of our engineers at CELLS Engineering Division.
- 2. Technician and Engineers from several fields such us Infrastructure, Workshop, Maintenance technicians, Civil Works, Survey&Alignment, Project Office, Draftsmen, Designers and Calculists.
- 3. After 7 year in operation the Engineering Division is working on the upgrade of their Maintenance Program.
- 4. According to our infrastructure growth the number of equipment pieces will increase.
- New installation will be included on the Maintenance Program: Radio Frequency (RF) Plants at Service Area, Beam Lines, and Helium Plant.

Thank you.

