



# **Environmental Systems**6th - 9th October 2014

## Synchrotron Applications to Biomaterials and Environment

#### **Manuel Valiente**

Universitat Autònoma de Barcelona Departament de Química. Centre GTS

Manuel.Valiente@uab.es







## **Biomaterials**

are materials (synthetic and natural; solid and sometimes liquid) that are used in **medical devices** or in contact with biological systems

#### **BIOMATERIALS**



## Numbers of Medical Devices/yr. Worldwid

| intraocular lens                | 7,000,000   |
|---------------------------------|-------------|
| contact lens                    | 75,000,000  |
| vascular graft                  | 400,000     |
| hip and knee prostheses         | 1,000,000   |
| catheter                        | 300,000,000 |
| heart valve                     | 200,000     |
| stent (cardiovascular)          | >2,000,000  |
| breast implant                  | 300,000     |
| dental implant                  | 500,000     |
| pacemaker                       | 200,000     |
| renal dialyzer                  | 25,000,000  |
| left ventricular assist devices | 100,000     |

Millions of lives saved. The quality of life improved for millions more.

A \$100 billion industry

#### **ENVIRONMENT**

#### **ENVIRONMENTAL SCIENCES**

the study of the interactions among the physical, chemical and biological components of the environment

## HOW?

## **WE WILL USE PHOTONS**

#### Photons Enable a Range of Modern Techniques to Study Matter

**Photoemission:** 



X-Ray Absorption:



X-Ray Diffraction:



Zone Plate Focusing Lens

Scanning Sample Stage

X-Ray

#### Some Key Issues in Molecular Environmental Science

#### **Water and Interfaces**



#### **Complexity**



## **Speciation** Cr3+ **Absorbance** 8.0 6.0 4.0 2.0 Cr6+ 0.8 0.6 0.4 0.2 6000 6020 6040

X-ray Energy (eV)



**Surface Reactions** 



**Natural Organic** Matter



Microorganisms & Biofilms



5980

**Nanoparticles** 







Widespread in the environment

Highly toxic for human beings and biota

Significant bioaccumulation through food chain

Potential hazard for the environment and human beings

**Chemical form** 

**Chemical speciation** 



## **Toxicity of Mercury**

- Likelihood of exposure
- **Geochemical and environmental factors** (redox potential, pH, reaction kinetics, soil type (sorbing materials: clays, Fe/Mn oxides and organic matter), etc.)
- **Speciation.** Toxicity (as well as mobility and bioavailability) strongly dependent on the chemical form in which mercury is found

alkyl Hg (e.g. 
$$CH_3Hg^+)$$
>Hg metal vapour,  $Hg^{2+}$  salts

Toxic effects on the physiological and the neurological systems. Methylmercury effects on the central nervous system are the most destructive





Application of X-ray Synchrotron-Based Techniques to the Study of the Speciation of **Hg** in Environmental and Biological Systems











## **Hg production**

**Primary production** (mining extraction)

Main element

By-product (gold-silver and massive sulphide deposits)

**Secondary production** (recycling, recovering, reuse)

Dismantling of chlor-alkali plants
Recovery from Hg counters
Recovery from rectifiers and Hg
manometers



#### **Uses of mercury**

- -Extractant in gold and silver production
- -Mercury-cathode for chlor-alkali industries
  - -Discharge lamps
  - -Power rectifiers
  - -Mercury batteries
    - -Thermometers
      - -Barometers
  - -Electrical switches
  - -Laboratory products
  - -Dentistry (dental amalgam)

-etc.

Increasing social awareness





**Dental amalgam** 

#### Almadén mine

Largest and oldest in the world
Mining activity ceased in 2002
Impressive legacy of contamination





## Dental amalgams<sup>3</sup>

Known since more than 150 years

Chemical composition: Hg (I) + Ag/Sn/Cu (Zn/Pb/In/Se)

Amalgamation process:

$$Ag_3Sn + Hg \Rightarrow Ag_3Sn + Ag_2Hg_3 + Sn_{7-8}Hg^4$$

$$\gamma \qquad \qquad \gamma \qquad \qquad \gamma_1 \qquad \qquad \gamma_2$$



Highly successful material: high resistance and cost effective

Social awareness about its biocompatibility. Alternatives:



<sup>&</sup>lt;sup>3</sup> Craig, R.G.; Powers, J.M. *Restorative dental materials*, Eleventh edition. Elsevier Health Sciences, St. Louis, 2002

<sup>&</sup>lt;sup>4</sup> Phillip's Science of Dental Materials. 11th Ed. W.B. Saunders, 2003. USA

## **Speciation methods**

The number and reliability of analytical techniques is limited

Conventional methods

-Extraction (distillation/ solvent extraction/ supercritical fluids)
-Separation (GC, HPLC, CE, etc.)
-Detection (UV, ICP-OES, CV-AAS, etc.)

**Drawbacks:** Risk of species modification

Limited amount of detectable species (mainly organometallic forms of Hg)

#### Other approaches:

**Theoretical approaches:** use of thermodynamic data to assess chemical speciation

Thermal desorption: speciation according with their decomposition temperatures

X-ray diffraction: identification of crystalline structures in the sample

**XAS** techniques

## X-ray absorption techniques<sup>9,10,11</sup>

Interesting and readily available tool to overcome the existing speciation gap

Study the elemental specific local atomic structure, based on the interaction between the sample and a X-ray radiation provided by a synchrotron facility



<sup>&</sup>lt;sup>9</sup> Brown Jr., G.E. et al. X-ray Absorption Spectroscopy and its Applications in Mineralogy and Geochemistry. Hawthorne, F.C. (ed.), Vol. 18, Chap. 11, Washington, 1988

<sup>&</sup>lt;sup>10</sup> Stern, E.A.; Heald, S.M. X-Ray Absorption. Principles, applications, techniques of EXAFS, SEXAFS and XANES. Koningsberger, D.C.; Prins, R. (eds.), John Wiley & Sons, New York, 1988

<sup>&</sup>lt;sup>11</sup> de Groot, F. et al. Neutron and X-ray Spectroscopy. Hippert, F. et al. (eds.), Springer, Dordrecht, 2006





#### **Objectives**

Mercury speciation in environmental and biological samples to assess their influence on the specific behaviour of Hg

- Application of the gained know-how to the study of highly Hg-impacted environments. Assessment of Hg mobility and bioavailability:
  - ✓ mine environments

- Study of mercury behaviour in human teeth restored with dental amalgams
  - ✓ microprobe techniques to assess diffusion processes and study the molecular environment of Hg





#### **Hg mine Almaden**







**Dental amalgam** 

- ✓ Sample preparation and characterization
- √ XAS analysis data treatment
- ✓ Complementary techniques:

•SES

**SEM-EDS** 

#### **XAS** techniques – spatial resolution at micro-scale level



<sup>&</sup>lt;sup>13</sup> Camerani, M.C.; Somogyi A.; Drakopoulos M. et al. Spectrochimica Acta Part B, 2001, 56, 1355-1365

#### **XAS** techniques – spatial resolution at micro-scale level



<sup>&</sup>lt;sup>13</sup> Camerani, M.C.; Somogyi A.; Drakopoulos M. et al. Spectrochimica Acta Part B, 2001, 56, 1355-1365

## Hg-impacted environments



#### > Sample preparation and characterization

Collection of samples

#### Almadén mining area: ore, soil, slag and calcine samples

- Dried, milled, homogenized and sieved under 100 μm
- MW digestion and total metal content (Hg, As, Cu, Zn, Ni, Pb, Fe, Mn) by ICP-OES







## Hg-impacted environments



#### Sample preparation and characterization

> XAS analysis

ESRF (beamline ID26) → XANES

HASYLAB (beamline A1)  $\longrightarrow$  XANES (beamline L)  $\longrightarrow$   $\mu$ -XANES  $\mu$ -EXAFS  $\mu$ -XRF **Transmittance mode**; L<sub>III</sub> (12284 eV)

reference compounds (HgCl<sub>2</sub>, Hg<sub>2</sub>Cl<sub>2</sub>, HgSO<sub>4</sub>, HgO, Hg(CH<sub>3</sub>COO)<sub>2</sub>, CH<sub>3</sub>HgCl, cinnabar, metacinnabar, C<sub>6</sub>H<sub>5</sub>HgCl, mosesite, corderoite, terlinguaite, schuetteite)

**Fluorescence mode**;  $L_{a1}$  (9988.8 eV),  $L_{a2}$  (9897.6 eV) unknown samples







- 1. Polycapillary halflens
- 2. Ionisation chamber 1
- 3. Ionisation chamber 2
- 4. Fluorescence detector
- 5. CCD-camera
- 6. Sampler

## Hg-impacted environments



> XAS analysis - data treatment: WinXAS18 and SixPACK19 software



<sup>&</sup>lt;sup>18</sup> Ressler, T. Journal of Synchrotron Radiation, 1998, 5(2), 118-122

<sup>&</sup>lt;sup>19</sup> Newville, M. SIXPack (Sam's Interface for XAS analysis Package), IFEFFIT 1.2.6, University of Chicago, 2004

## **DENTAL TISSUES**



#### > Sample preparation and characterization

- Sixteen amalgam containing human molar teeth from clinical offices
- rinsed, disinfected
- SEM-EDS: first qualitative overview on the elemental composition





#### > XAS analysis

$$\label{eq:multiple} \text{HASYLAB (beamline L)} \left\{ \begin{array}{l} \mu\text{-XRF (Ca, Hg, Fe, Mn, Cu, Pb, Zn, Br)} \\ \mu\text{-EXAFS, Fluorescence mode; $L_{\alpha1}$ (9988.8 eV), $L_{\alpha2}$ (9897.6 eV)} \end{array} \right.$$



#### > **XAS analysis - data treatment:** (μ-EXAFS)

#### 6. Conversion k





## 8. Inverse Fourier



structural parameters each shell



R(Z

N<sub>j</sub>, n<sup>o</sup> neighbours R<sub>j</sub>, distance σ<sub>j</sub>, Debye-Waller factor

## **Results**

Almadén mine environment



#### 4. Results and

#### Almadén mine

#### **Discussion**

#### environment







**ESRF**: high excitations of Fe and saturation of the fluorescence detector

## Almadén mine environment

#### SEM-EDS analysis → compositional information of the bulk



Full-field area → clay composition (Al, Si, K and Fe)
Results corroborated by XRD





#### Speciation results by XANES, $\mu$ -XANES and $\mu$ -EXAFS

| Sample        | HgS <sub>red</sub> | HgS <sub>blac</sub> | HgSO₄ | HgCl₂ | HgO | Schuetteite | Residual          |
|---------------|--------------------|---------------------|-------|-------|-----|-------------|-------------------|
| ore 1         | 77                 | 12                  | 6     | 6     | <3  |             | 0.025             |
| ore 2         | 54                 | 19                  | 14    | 6     | 5   |             | 0.059             |
| ore 3         | 51                 | 9                   | 6     | 29    | 4   |             | 0.047             |
| ore 4         | 63                 | 10                  | 8     | 14    | 4   |             | 0.054             |
| ore 5         | 68                 | 7                   | 6     | 14    | 5   |             | 0.035             |
| soil 1        | 66                 | <3                  | 14    | <3    | 17  |             | 0.218             |
| soil 2        | 56                 | <3                  | 22    | 22    | <3  |             | 0.186             |
| soil 3        | 41                 | <3                  | 24    | 19    | 16  |             | 0.282             |
| soil 4        | 74                 | <3                  | 14    | <3    | 10  |             | 0.178             |
| soil 5        | 66                 | <3                  | 17    | 18    | <3  |             | 0.149             |
| soil 6        | 34                 | <3                  | 5     | 47    | 14  |             | 0.111             |
| soil 7        | 64                 | <3                  | 18    | 18    | <3  |             | 0.191             |
| soil 8        | 62                 | <3                  | 20    | 19    | <3  |             | 0.155             |
| soil 9        | 54                 | <3                  | 21    | 25    | <3  |             | 0.160             |
| soil 10       | 76                 | <3                  | 24    | <3    | <3  |             | 0.195             |
| slag 1        | <3                 | 88                  | 12    | <3    | <3  |             | 0.126             |
| slag 2        | 10                 | 65                  | 18    | <3    | 7   |             | 0.172             |
| slag 3        | 29                 | 42                  | 16    | 12    | <3  |             | 0.122             |
| caldine1; p.1 | <5                 |                     |       |       | 47  | 49          | 0.17 <sup>b</sup> |
| caldine1; p.2 | 34                 |                     |       |       | 41  | 24          | 0.74 <sup>b</sup> |
| caldine1; p.3 | 9                  |                     |       |       | 55  | 36          | 0.26 <sup>b</sup> |
| caldine2; p.1 | 89                 |                     |       |       | 5   | 6           | 0.23 <sup>b</sup> |
| caldine2; p.2 |                    |                     |       |       | 47  | 27          | 1.68 <sup>b</sup> |
| caldine2; p.3 |                    |                     |       |       | 38  | 47          | 1.32 <sup>b</sup> |
|               |                    |                     |       |       |     |             |                   |

 Cinnabar: main Hg species in ore and soil samples

•Metacinnabar: main Hg species in slags. No appear in calcine samples

•HgO: slow conversion of HgS under aerobic conditions

•Schuetteite: supergene alteration of cinnabar, on sunlight-exposed rocks

•HgSO<sub>4</sub>, HgCl<sub>2</sub>: decomposition of hydrothermal alteration products or exposure of Hg ores and slags to weathering processes

 $<sup>^{\</sup>mathbf{b}}$  evaluated by the reduced chi square value ( $\chi^2$ )

#### 4. Results and

#### Soils surrounding a Discussion

#### chlor-alkali plant

#### Speciation results by XANES and $\mu$ -XANES



- Sample bulk: predominance of cinnabar and corderoite
- HgSO<sub>4</sub>, HgO identified in significant proportions → risk of Hg mobilisation
- Environmental conditions:
  - $\triangleright$  presence of S  $\longrightarrow$  HgS
  - > HgS oxidation in surface, oxygenated soils or wastes  $\rightarrow$  HgSO<sub>4</sub>, HgO
  - > NaCl used as raw material in chloralkali plant → corderoite

| Sample     | Beamline | e Detection  | HgS <sub>red</sub> | Hg0   | HgSO₄ | Corderoite | Reduced χ <sup>2</sup> |
|------------|----------|--------------|--------------------|-------|-------|------------|------------------------|
| M1 part.   | 1 L      | Fluorescence |                    | 86.4  | 16.85 |            | 0.028                  |
| M1 part. 3 | 2 L      | Fluorescence | 26.28              |       | 79.95 |            | 0.030                  |
| M2         | A1       | Fluorescence | 32.85              | 10.31 | 19.82 | 33.47      | 0.00028                |
| МЗ         | A1       | Fluorescence | 32.96              | 10.19 | 19.79 | 33.58      | 0.00030                |
| M4         | A1       | Fluorescence | 33.18              | 9.91  | 19.85 | 33.82      | 0.00045                |
| M5         | A1       | Fluorescence | 36.78              | 6.12  | 18.05 | 37.28      | 0.00020                |

Dental amalgam



## mal

#### **SEM-EDS** analysis

#### Interface enamel-almalgam-dentine















**Hg:** located in the amalgam region → minimum diffusion

**Cu,Zn:** higher tendency to diffusion toward the dentine due to a partial exchange with Ca ions

No heavy metals in the pulp cavity and root regions  $\rightarrow$  minimum diffusion to the blood





#### Local environment of Hg by $\mu$ -EXAFS



Nearly identical EXAFS features → similar Hg coordination environment







- Presence of the γ-Ag<sub>2</sub>Hg<sub>3</sub> phase,
   which forms during amalgamation
- No O in the first shells → poor (or null) interaction of Hg with the environment
- Large fit values for the Debye-Waller factors → poor data quality at intermediate to higher k values

## **Conclusions**

#### **Conclusions**

- ✓ XANES and EXAFS spectroscopies have been shown to be powerful speciation tools, with (almost) no sample pre-treatment. These techniques have been successfully applied to study both environmental and biological samples
- ✓ **Synchrotron-based microprobe techniques** have been confirmed as a keytool for the study of **chemical speciation in microscopic environments.** This technique importantly broadens the possibilities for the study of bio/geo/chemical processes taking place at microscopic scale
- ✓ Accuracy and reliability of XAS data may slightly decrease for complex sample-matrices (as for environmental samples). The coupling with appropriate lab-scale wet techniques (biosensors, SES, SEM) is recommended in these cases
- ✓ Important findings have been driven regarding Hg behaviour in environmental samples. The **presence of 'soluble' salts in Hg-impacted environments** results of an utmost importance and must be taken into consideration in **further risk assessment exercises**
- ✓ **Stability of mercury in amalgam tooth filling** has been indicated by XAS techniques, although **further diffusion of other heavy metals as Cu and Zn** has been observed





#### Thanks to:

#### **Anna Bernaus**

Application of X-ray Synchrotron-Based Techniques to the Study of the Speciation of **Hg** in Environmental and Biological Systems









## and

## To all past and present GTS components ...the joy of learning doing research...



