

Application of total X-ray scattering and pair distribution function analysis to biominerals and environmental materials

Richard J. Reeder

Department of Geosciences

Stony Brook University

Collaborators: Andrew Goodwin, Marc Michel, John Parise, Andy Ilot Dave Keen, Martin Dove, Brian Phillips, Millicent Schmidt, Yuanzhi Tang

What is total scattering?

Perfect Crystal

Periodic array of atoms

Bragg diffraction gives average long-range order (LRO)

What is total scattering?

Disorder and Diffuse Scattering

Example from Reinhard Neder's crystallography webpage

www.lks.physik.uni-erlangen.de/diffraction

Diffuse scatter gives SRO and MRO

Total scattering =

Bragg scattering +

Diffuse scattering

Provides structure information over a range of length scales

Materials with no long-range order (e.g., glasses, liquids)

Rajan et al., Energy Environ. Sci. 7, 1110-1116 (2014)

- No Bragg peaks; only broad, diffuse scattering features
- Diffuse intensity is typically orders of magnitude weaker than Bragg intensity
- How do we use total scattering to get SRO and MRO information?

Total X-ray Scattering and the Pair Distribution Function **Advanced Photon Source** Calcite 1300 1300 1200 1200 1100 1100 X-ray Columns 1000 beam 1000 a-silicon 90 keV - 900 area detector $(\lambda = 0.137 \text{ Å})$ - 800 . - 700 700 800 1100 1200 1300 1400 **Reduced structure function** Pair distribution function 20 Calcite Calcite 15 Q[S(Q)-1] 10 2 **Fourier** -4 transform -5 -6 10 5 15 20 25 5 10 15 20 r (Å) $Q(A^{-1})$

The pair distribution function gives the distribution of interatomic distances, weighted by the scattering power of the atom pair

Adapted from E.S. Bozin

What environmental problems can be studied using total scattering?

Material property: Dominant scattering Bragg Long-range order → Defects in crystals Limited long-range order → Nanocrystals No long-range order → Amorphous solids (SRO, MRO) Liquids Diffuse

What environmental problems can be studied using total scattering?

Material property: Dominant scattering Bragg Long-range order → Defects in crystals Limited long-range order → Nanocrystals No long-range order → Amorphous solids (SRO, MRO) Liquids Diffuse

Examples:

- 1. Amorphous calcium carbonate and biomineralization
- 2. Cr(III) substitution in ferrihydrite structural changes
- 3. Structure of arsenate sorption complexes on alumina and ferrihydrite

Biomineralization via Amorphous Calcium Carbonate (ACC)

Plant cystoliths (Taylor et al., Proc. Roy Soc Lond B, 252, 75, 1993)

Woodlice (Becker et al., Dalton Trans, 2003, 551)

Ascidian (Levi-Kalisman et al., Dalton Trans, 2000, 3977)

Echinoderm spine (Politi, Weiner; http://wis-wander.weizmann.ac.il/site/en/weizman)

Calcium carbonate is an unlikely noncrystalline solid

- CO₃ not an effective glass former
- ACC is kinetically stabilized
 - High supersaturation
 - Rapid precipitation

Synthetic ACC is hydrated: CaCO₃·H₂O

Why we want a synchrotron X-ray source for PDF

Complete scattering spectrum collected in a few seconds to a few minutes

Total X-ray scattering and PDF analysis of ACC

Total X-ray scattering and PDF analysis of ACC

Total X-ray scattering and PDF analysis of ACC

What about the structure of the ACC phase?

- PDF for ACC distinct from crystalline polymorphs
- Low-r peaks can be assigned from basic knowledge
- Challenge is to derive 3-D structure model from
 1-D representation

Reverse Monte Carlo Refinement

- RMCProfile (Tucker et al.)
- Random initial models (~10,000 atoms)
- Random movements that improve fit to Q[S(Q)-1] are statistically favored
- Restraints based on known coordination

Goodwin et al., Chem. Mater., 22, 3197 (2010)

Reverse Monte Carlo Refinement

- Configurations are not unique
- Identify patterns of coordination
- RMC gives most disordered configuration consistent with data
- Protons accounted for indirectly

Goodwin et al., Chem. Mater., 22, 3197 (2010)

Ca coordination

 Broad distribution of Ca coordination number

- Mixture of monodentate and bidentate CO₃ linkage
- Ca coordination environments of all crystalline polymorphs present
- Exclusively monodentate 6-fold environment of calcite is rare
- Hydrogen atoms/bonds added post-RMC

Medium-range Order

 Main contributions from Ca-Ca and Ca-O pairs

Goodwin et al., Chem. Mater., 22, 3197 (2010)

Synthetic vs biogenic ACC

Lobster gastroliths

Reeder et al., Cryst. Growth Design, 13, 1905–1914 (2013)

In situ kinetic studies using total scattering

- Rapid data acquisition
 - 12 sec spectrum
- Reaction cell in beam path
 - Static cell
 - Flow-through cell

In situ kinetic studies using total scattering

Reactant and product fractions determined using linear combination fitting

Reference spectra:

- ACC
- Calcite
- Vaterite
- Aragonite
- Water

Structure of Mixed Cr(III)-Fe(III) Hydroxide Phases

- Complete compositional series between Cr and Fe end members
- Solubility and FTIR studies suggest they behave as solid solution
- Mixed composition phases have lower solubility than the Cr end member (Sass and Rai, 1987; Rai et al., 1987)
- Important for environmental remediation via reduction of Cr(VI)

http://tarkine.org/mining/

Pair distribution function analysis

Tang et al., Chem. Mater., 22, 3589-3598 (2010)

HRTEM

Pure Cr

Tang et al., *Chem. Mater.*, 22, 3589–3598 (2010)

PDF

Pair correlations average over all atoms

Not element specific

Fe K-edge XANES

- Position of edge and pre-edge feature indicate all Fe³⁺
- Edge structure changes with composition as seen in 1st deriv

Cr K-edge XANES

- Absence of pre-edge peak indicates all Cr³⁺
- Edge structure changes with composition (1st deriv)

What can we do with this?

 Previous studies suggest small oligomers are produced as a result of polymerization during Cr(III) hydrolysis

Edge- and cornersharing of Cr(III) octahedra

Conceptual view of a possible cluster (oligomer?) without protons shown

Real-space fit of cluster model with Cr10 PDF

- Model fit shows some discrepancies
- Likely that multiple cluster (oligomer) types exist

Using PDF to look at surface complexes – differential PDF

- Difference in scattering is due to adsorbate
- Very weak overall contribution
- Difference is very small; data quality must be very good
- Need strong scatterer in adsorbate molecule (heavy element)

Example: Arsenate sorbed onto alumina and ferrihydrite

AsO₄³⁻ sorbed onto alumina

— As-alumina

— Alumina

— Difference (x5)

Li et al., *Environ. Sci. Technol.*, 45, 9687–9692 (2011)

AsO₄³⁻ sorbed onto alumina

Bidentate, binuclear surface complex

Bidentate, mononuclear surface complex

Monodentate surface complex

Li et al., Environ. Sci. Technol., 45, 9687–9692 (2011)

d-PDF of arsenate sorbed onto ferrihydrite

Harrington et al., Inorg. Chem., 49, 325-330 (2010)

Summary

- PDF analysis is complementary to EXAFS
- Not element specific; averages over all atoms
- Structure determination possible for amorphous and nanocrystalline phases
- More precise determination of distances than EXAFS
- Greater length scale accessible compared to EXAFS
- Poorly suited for dilute phase/species, except in optimal conditions
- X-ray scattering cross section for H atoms extremely small