

HARMONIC EU CAVITY COMISSIONING: OPERATION AND TBL COMPENSATION

HarmonLIP 2025 - Cerdanyola del Vallès, Spain 24/10/2025

Hamed Shaker on behalf of 3HC Collaboration Hamed Shaker on behalf of 3HC Collaboration

ALBA 3HC at BESSY-II

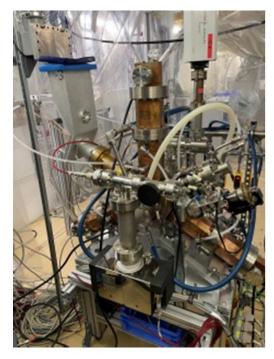
Table 1: Harmonic EU cavity parameters

Parameter	Value	Unit
Maximum voltage	200	kV
Shunt impedance	1.1	$M\Omega$
Unloaded quality factor Q_0	14000	-
Tuning range	12.4	MHz

Main cavity parameters measured at the central resonance frequency, f_0 .

Parameter	Symbol	Value	Unit
Reflection coefficient	S_{11}	-50.8	dB
Coupling factor	$\boldsymbol{\beta}$	1.006	_
Bandwidth	BW	214	$_{ m kHz}$
Loaded quality factor	Q_{l}	6995	-
Unloaded quality factor	Q_0	14 031	-
Transmission to pick-up antenna	S_{21}	-45.9	dB

Input data used to calculate the impedance budgets of BESSY II.

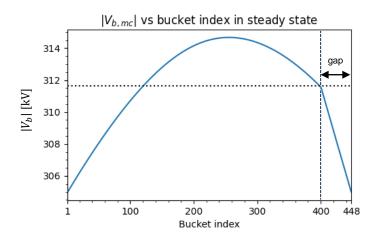

	_		
Parameter	Symbol	Value	Unit
Revolution frequency	f_{rev}	1.2492	MHz
Beam current	I_b	300	mA
Beam energy	\boldsymbol{E}	1.7	GeV
Momentum compaction factor	α	$7.3 \cdot 10^{-4}$	-
Synchrotron frequency	f_s	$7.0 \cdot 10^3$	Hz
Beta function	β	5.0	m
Longitudinal damping decrement	τ_s	752	s^{-1}
Transversal damping decrement	$ au_{x,y}$	250	s^{-1}

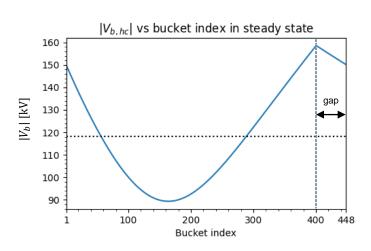
Active harmonic EU cavity: Commissioning and operation with beam, F. Perez et al., Nuclear Instruments and Methods in Physics Research A 1072 (2025) 170195 And Summary of the commissioning of the active harmonic EU cavity, F. Perez et al., IPAC24, US

3HC collaboration

A collaboration between ALBA, HZB and DESY. ALBA 3HC cavity and LLRF installed in BESSY-II since 2022 and dismantled on August 2025. Some recent achievements:

- TBL compensation
- Near flat potential operation
- Passive loop operation

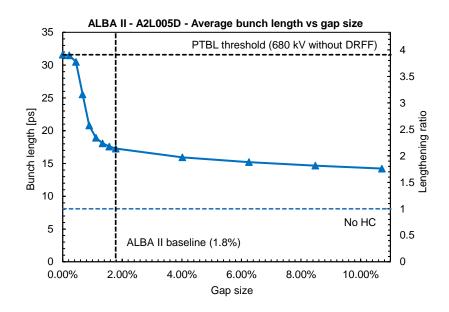



TRANSIENT BEAM LOADING (TBL)

- In RF cavities, the **beam induced voltage** (the beam loading), V_b represents a considerable part of the total voltage, V_c . This contribution can be around the 40% in the MC and > 80% in the HC
- V_b is built on the successive passage of bunches. It reaches an equilibrium when the decay of the cavity voltage between bunch passages matches the voltage added by each bunch

$$V_b = -\left(\frac{1}{2} V_{b0} + V_{b1} e^{-\frac{t_1}{\tau_f}} e^{i\psi_1} + V_{b2} e^{-\frac{t_2}{\tau_f}} e^{i\psi_2} + \cdots\right) = -\frac{1}{2} V_{b0} - \sum_{l=1}^{N} V_{b0} e^{l(-\delta + i\psi)}$$

Uneven charge distribution in the buckets, such as gaps, break the homogeneous build-up causing a
periodic modulation in the cavity voltage with a period equal to the revolution time



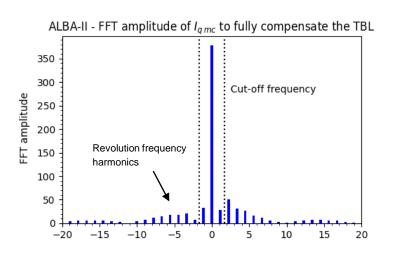
TRANSIENT BEAM LOADING (TBL)

- The different MC and HC voltages seen by the bunches cause different bunch properties (synchrotron frequency, bunch length, phase, etc.) along the bunch train
- The bunch length, and thus the Touschek beam lifetime, is specially affected in the case of a double NC RF system tuned to maximize them
- Just a 2% gap can lead to Touschek lifetime reductions of about 45%
- Transient beam loading (TBL) compensation is therefore highly recommended in case a gap in the beam is foreseen

TBL COMPENSATION - METHODOLOGY

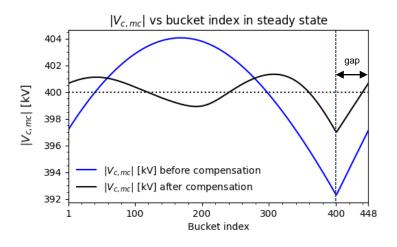
• Taking advantage of the active HCs, it is possible to modulate the generator induced voltage V_b , to **counter** the modulation induced by the beam and get a flatter cavity voltage (V_c) :

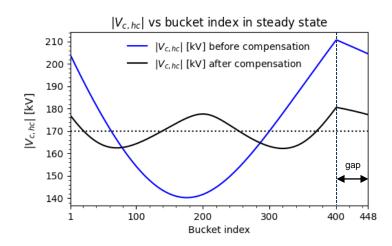
$$V_c(t) - V_b(t) = V_g(t)$$


which gives us **the ideal** V_g to fully compensate the TBL. From this signal, I_g and then P_g can be then calculated [1]:

$$I_g(t) = \frac{1}{k} \left[\frac{dV_g(t)}{dt} + \frac{1}{\tau_f} \left[1 - i \tan \psi_d \right] V_g(t) \right] \qquad P_g(t) = \frac{R_s \left| I_g(t) \right|^2}{8\beta}$$

- However, RF cavities have a narrow bandwidth and do not accept well the high frequency components of the modulated power required to fully compensate the TBL. A very high generator power is required for some buckets, far exceeding the available one, resulting in a high reflected power, as well
- Following the strategy proposed by [1], we can filter out most of the high frequency components to effectively mitigate the TBL effects with reasonable amounts of additional generator power
 - 1. Yamamoto et al., DOI: 10.1103/PhysRevAccelBeams.21.012001

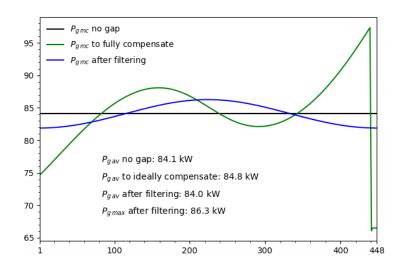

TBL COMPENSATION - METHODOLOGY

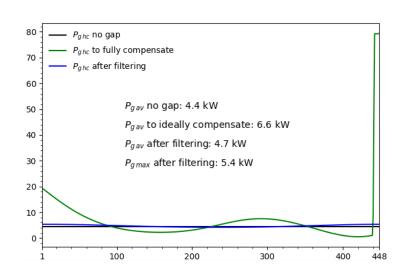


• After removing the **frequency components** higher than $\pm nf_c$, where $f_c = f_{rev}$ (1.12 MHz for ALBA and ALBA II) we construct a new, filtered V_a :

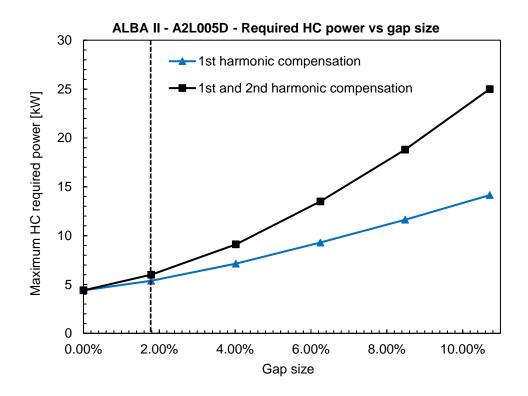
$$V_g(t) = e^{\alpha(t-t_0)} \left[V_g(t_0) + k \int_{t_0}^t I_{g \ filt} (t') e^{-\alpha(t'-t_0)} dt' \right]$$

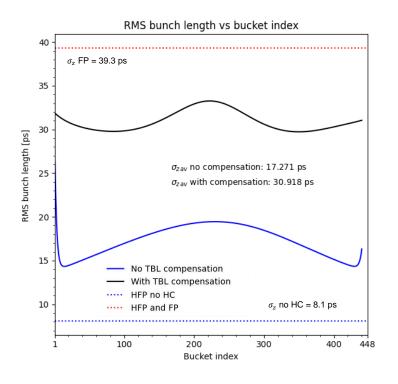
The result is a flatter cavity voltage signal, both in amplitude and phase, for both the MCs and HCs, without requiring so much power:

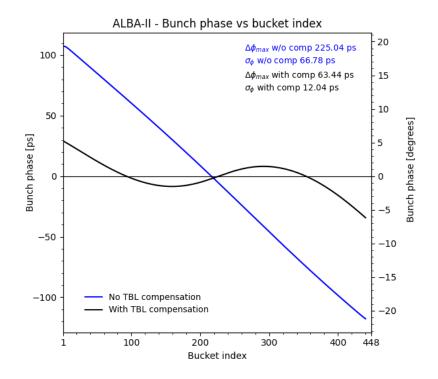


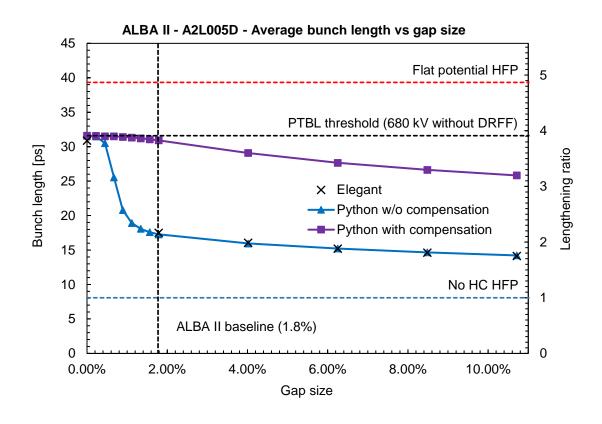


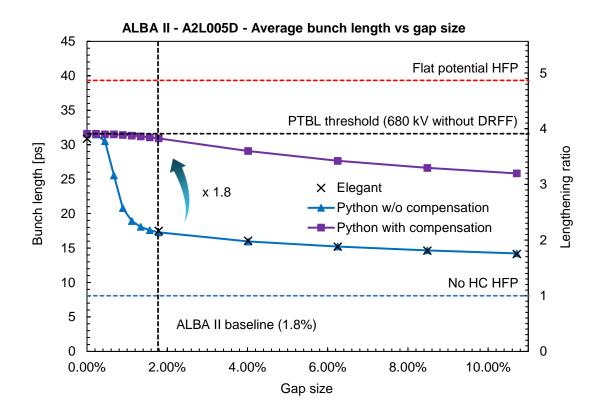
TBL COMPENSATION - METHODOLOGY


- For the ALBA II baseline scenario, for instance, full compensation in the HCs would require 80 kW of power
- By filtering the harmonics higher than 1 f_{rev} , the required power is only 1 kW above the no-gap case, reaching a maximum of **5.4 kW**
- With the proposed compensation scheme, the average power consumption remains approximately the same as without compensation

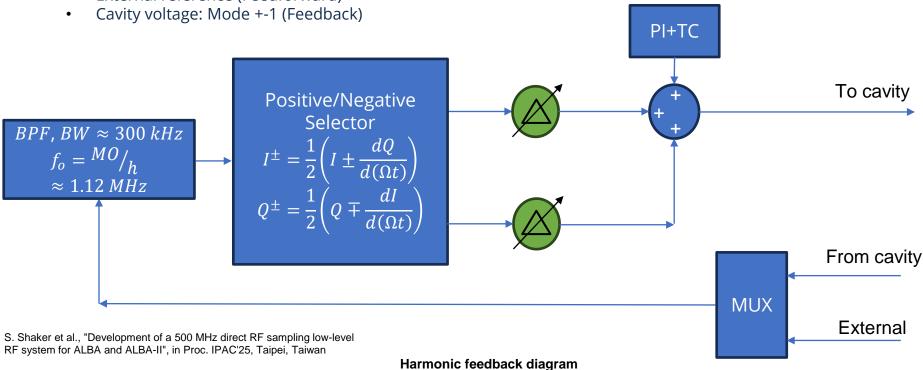


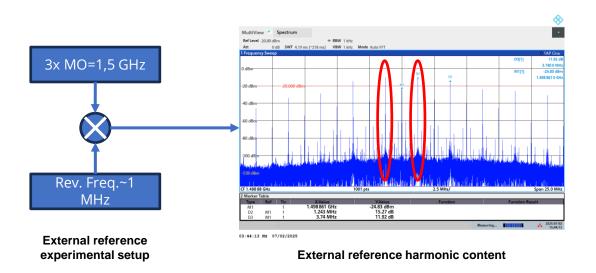

- Even if just a 2% of gap has a heavy impact on the average bunch length, further increasing it does not seem to worsen it much
- For gaps < 2%, compensations higher than 97% should be easily achieved
- Tracking simulations for the compensation case are in progress

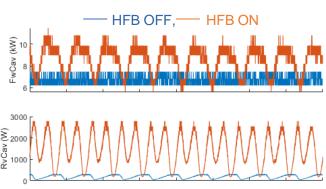

• In the ALBA II baseline scenario (with only a 1.8% gap), correcting only the 1st revolution harmonic would yield a **very high compensation efficiency**, with an average bunch length of 30.92 ps, around 98% of the no-gap case, 31.6 ps.



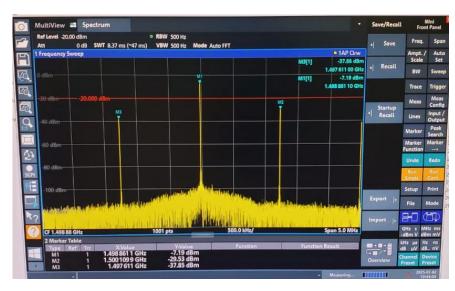
- The bunch form factor and bunch phase have been included in the TBL calculation. Convergence is achieved after approximately 10-15 iterations
- Tracking simulations have been performed with elegant to cross-check the semi-analytical results, showing good agreement between both approaches within the linear region


- Even if just a 2% of gap has a heavy impact on the average bunch length, further increasing it does not seem to worsen it much
- For gaps < 2%, compensations higher than 97% should be easily achieved
- Tracking simulations for the compensation case are in progress


Implementation on the LLRF system


- Implemented a new control module includes IIR bandpass-filter and positive/negative frequency separator modules.
- Feedforward/feedback drive allows to send revolution harmonic content to cavities.
- Source can be chosen between:
 - External reference (Feedforward)

TBL Compensation: Setup



Forward and reflected power with and w/o compensation measurements

- Compensation applied during 3HC commissioning in BESSY II.
 - Current: 300 mA, Main RF Voltage: 0.7 MV (2 cavities parked, 2 with detuning -25 deg.), Landau cavities: parked, **Fill pattern: 25% gap**, 3HC: 130 kV (detuning 0 deg).
- External reference built with analogue mixer and filtered using digital harmonic resonant feedback.

TBL Compensation – Harmonic Reduction

MultiView Spectrum

Ref Level 2000 dbm

At 0 db SWT 8.37 ms (~47 ms) VBW 500 Hz

At 0 db SWT 8.37 ms (~47 ms) VBW 500 Hz

M3[1] -7.4.22 dbm

M3[1] -7.4.22 dbm

M3[1] -7.17 dbm

1.486 861 10 Gtz

Frequency Sweep

Ampt./

Frequency Sweep

1.486 861 10 Gtz

Trace Trice

Marker Function

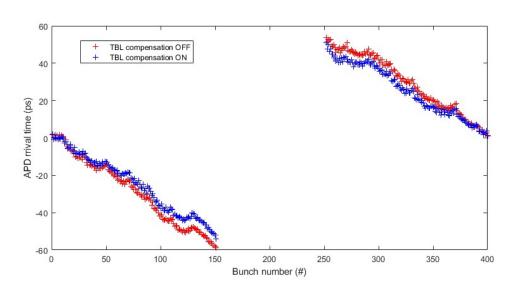
Function

Function

File Mode

Control

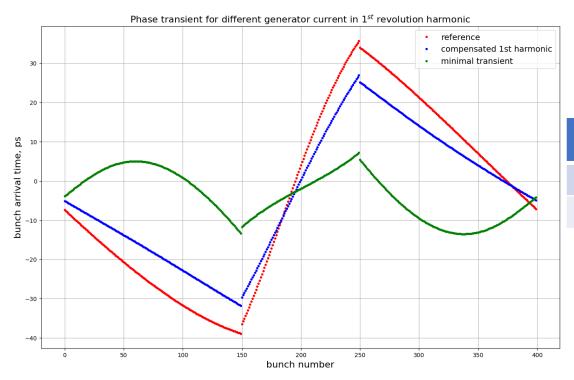
File Mode


Cavity harmonic content w/o compensation


Cavity harmonic content with compensation

- Compensation applied during 3HC commissioning in BESSY II.
- Current: 300 mA, Main RF Voltage: 0.7 MV (2 cavities parked, 2 with detuning -25 deg.), Landau cavities: parked, Fill pattern: 25% gap, 3HC: 130 kV (detuning 0 deg).
- Harmonic content of the cavity is reduced by ~ -30 dB.

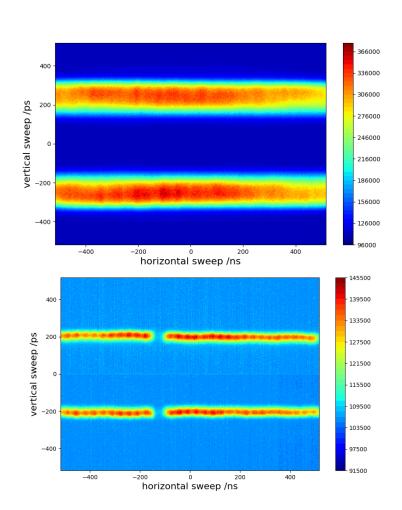
TBL Compensation: Result


Avalanche Photo Diode arrival time with and w/o compensation measurements

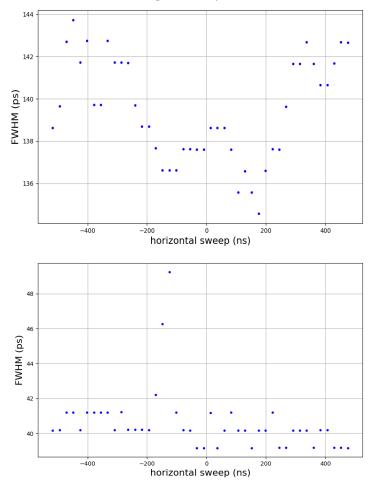
Bunch phase arrival time with and w/o compensation simulation

- Compensation applied during 3HC commissioning in BESSY II.
- Current: 300 mA, Main RF Voltage: 0.7 MV (2 cavities parked, 2 with detuning -25 deg.), Landau cavities: parked, Fill pattern: 25% gap, 3HC: 130 kV (detuning 0 deg).
- TBL compensated from 114 ps to 102 ps: **-10,5 %**.

TBL Compensation: Analysis



ALBA 3hc	Reference	Full compensation	Minimal phase transient
Generator current on 1st rev. harmonic, (A)	0	0.0702+0.0039j	0.250- 0.034j
Phase transient (max- min, ps)	72.89	56.99	18.97


- model reproduces the numbers for reference case (blue) and for the case of compensated 1st harmonic (red)
- Transient for the case of compensated 1st harmonic is achieved at generator current I_{gen} =-(-0.070-0.0039j)
- minimal phase transient amplitude is predicted for I_{gen}=-(-0.250+0.034j) (green)
- This last case was not observed

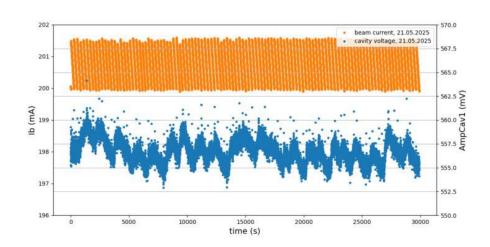
Flat Potential Operation

300mA homogeneous filling pattern beam close to flat longitudinal potential at BESSY II

30-bunchs gap, 1.0MV main RF Harmonic cavities parked

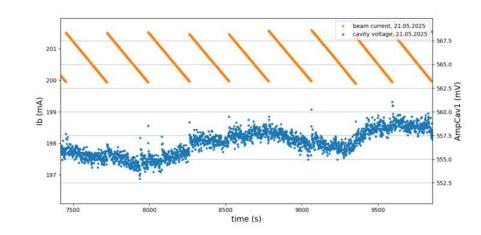
Flat Potential Operation - Steps

	Main RF	Passive 3hc	Active 3hc	Fill pattern	Current achieved	transient / bunch length (FWHM)	Life time	Comments
1	1400kV (4x350kV)	4x3kW (=270kV), lengthening (I)	120kV	Gap 100 bunches	300mA	250ps/?	5.9H	We already new it is a stable state, however lifetime improvement is small due to the transient
2	1400kV	4x3kW, (l)	70kV, 120kV	Homogeneous	250mA	~15ps/ ?	11.9H	4 tries with beam losses at current from 254mA to 267mA Increasing active 3hc amplitude does not make it better
3	1400kV	Park- lengthening (+0.5 F_rev)	70kV, 120kV	Homogeneous	242mA, 211mA			Reduced threshold advises it could be mode 1 coupled bunch instability. To stabilize it additional impedance at -1 revolution harmonic would help - > park something there!
4	1400kV	4x3kW, (l)	parked (-0.5 F_rev)	Homogeneous	300mA		8.9H	It works! Stable for 40 min during lunch break> Reduce main RF.
5	950kV	4x3kW, (l)	parked (-0.5 F_rev)	Homogeneous	300mA		12.5H	Unstable at lower main RF amplitudes, but it is a different kind of instability, the beam does not get lost> Park a passive 3hc at ~-0.6 F_rev and activate ALBA 3hc.
6	1400kV	3x3kW, (l) LC3 at ~-0.6 F_rev	100kV	Homogeneous	300mA		9.44H	Stable! -> Reduce main RF.
7	1040kV	3x3kW, (l) LC3 at ~-0.6 F_rev	115kV	Homogeneous	300mA	~9ps/ 140ps	15.6H	Stable! Close to quartic potential!

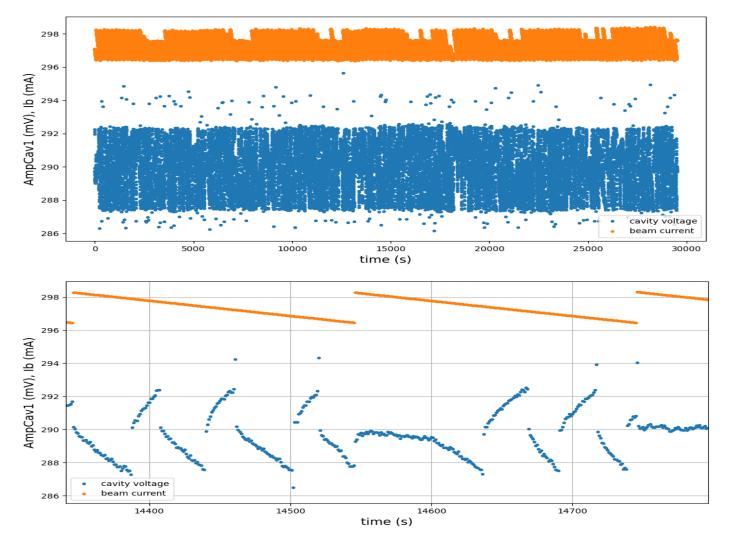

Passive Loop Operation – 200kV & 210kV

```
Terminal - opi@opic24c /home/opi/struckcal

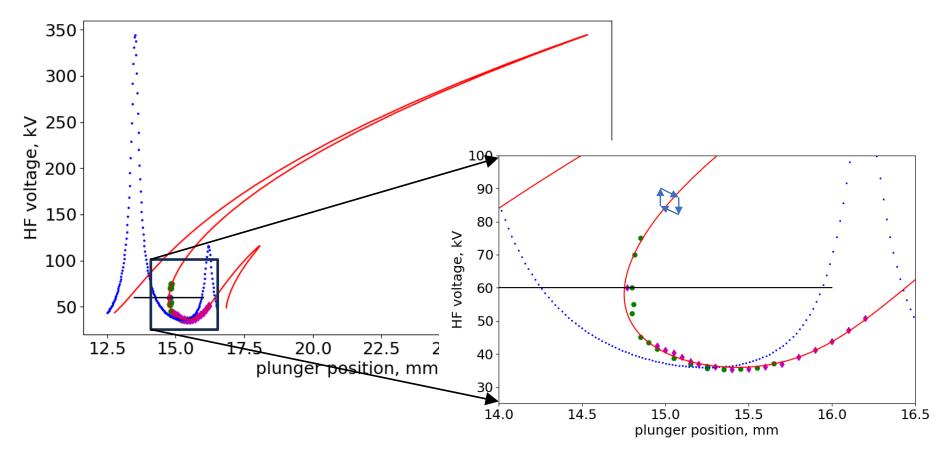
File Edit View Terminal Tabs Help


Every 3.0s: python3 cali... opic24c: Tue May 20 23:50:48 2025

Cavity voltage setpoint: 17.23 kV
Cavity voltage measurement: 200.14 kV
Waveguide forward power: 0.06 kW
Waveguide reverse power: 13.18 kW
Cavity input power: -13.13 kW
Cavity dissipated power: 18.21 kW
Beam power: -31.33 kW
Beam synchronous phase: -51.45 %
```



For the stability test over night:

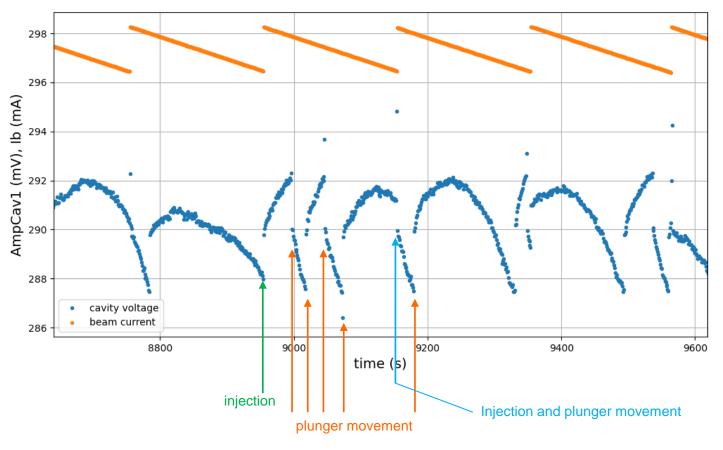
- switch OFF 3hc SSA
- set water flow of the RF load after circulator to ~27 (l/min)
- set slow interlock reflected power level to 20kW (73.0 dBm)
- inject 200mA and go to passive loop on the shortening side at 200kV (~18.3 kW cavity dissipated power)
- Long stability test for this setup overnight.
- Maximum stable 210kV was achieved.



Passive Loop Operation - 100 kV

Passive Loop Operation - Thermal instability

- · Cavities are on thermally unstable arm in lengthening
- Picture for a passive 3hc (BESSY-II Landau cavity)
- Blue arrows LLRF passive loop operation



www.cells.es

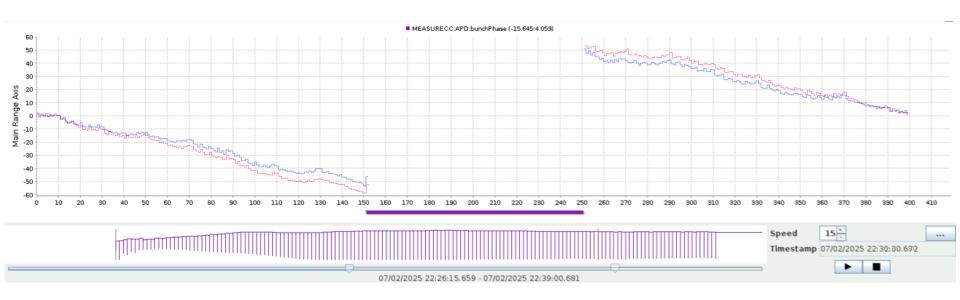
Cerdanyola del Vallès (Barcelona) Spain Tel: (+34) 93 592 43 00

Passive Loop Operation



- Outliers by plunger movement or injection
- Both by plunger movement up and down

Test at BESSY-II


- Machine state: current 170mA, amplitude main RF 1.4MV, Landau cavities lengthening, fill pattern 25%
 gap, ALBA 3hc "parked" close to +1 rev. harmonic
 (plunger pos. 4.39).
- Two transients recorded on 02.07.2025 overlayed: timestamps 21:14:25 (red, without compensation) and 21:17:10 (blue, with compensation). Transient reduction according to E_log from 73ps to 57ps, or about 20%.
- The revolution signal mixed with the master Oscillator signal and fed to the LLRF system for the feed-forward system

Test at BESSY-II

- Machine state: current 300mA, main RF 0.7MV (2 cavities parked, 2 with detuning -25 deg.), Landau cavities parked, fill pattern 25% gap, ALBA 3hc at 130 kV, 0 deg.
- Two transients recorded on 02.07.2025 overlayed: timestamps 22:32:00 (red, without compensation) and 22:36:30 (blue, with compensation). Transient reduction according to E_log from 114ps to 102ps, or about 10%.

