Double- and Triple-RF systems for MAX4^U

M. B. Alves, F. Cullinan, Å. Andersson, P. F. Tavares

Outline

- 1. MAX4^U and MAX IV RF system
- 2. Double-RF
- 3. Triple-RF

Toolbox used

Pycolleff (GitHub)

ALBuMS, Mbtrack2 (GitLab)

Mbtrack (tracking)

Securing leadership, excellence, resilience, and relevance of Swedish research with X-rays for the next decades

A "surgical" upgrade of our 3GeV ring from 328 to below 100 pm·rad

Relevant parameters for MAX4^U lattice candidates (CDR)

R3: MAX IV 3GeV Ring

AR: Absolute Requirement

SG: Stretched Goal

	R3 (as designed)	AR (i01-04-01-01)	SG (n01-01-01-01)	Units
Natural emittance	mittance 328		65	pm rad
Natural energy spread	7.69	7.55	8.46	10 ⁻⁴
RF voltage	1.8	1.0	1.0	MV
Momentum compaction factor	3.06	0.944	0.540	10 ⁻⁴
Energy loss per turn	364	414	474	keV
Natural bunch length	29	22	19	ps
Damping times (H/ V/ L)	15.73 / 29.05 /25.19	14.75 / 25.51 / 20.08	11.44 / 22.29 / 21.18	ms

Design current: 500 mA uniform filling

Requirements for bunch lengthening

R3 delivery conditions

- Beam current: 400 mA
- RF voltage: 1.13 MV
- Natural bunch length: 38 ps
- Double-RF system (2 passive HC3s): 180 ps (x 4.7 lengthening)
- Beam lifetime with HC3s: 15 h
- Essential for HOMs rejection, alleviating IBS

MAX4^U lattices

- Beam current: 500 mA
- RF voltage: 1.00 MV
- Natural bunch length: ~ 20 ps
- Ideal double-RF performance: ~120 ps (x 6 lengthening)
- Higher lengthening factors required → Triple-RF system

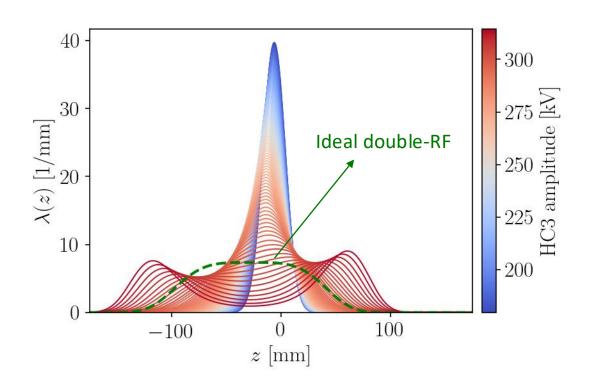
Main Cavity

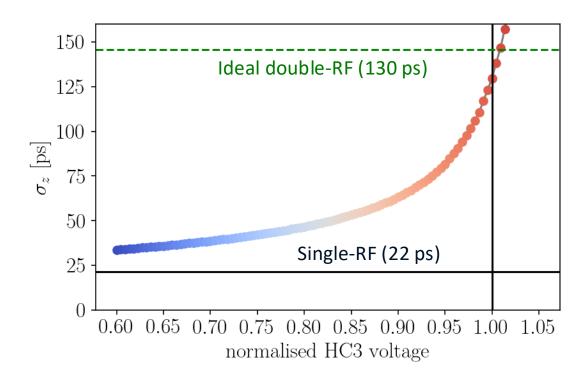


HC3 (Passive)

Images by Åke Andersson

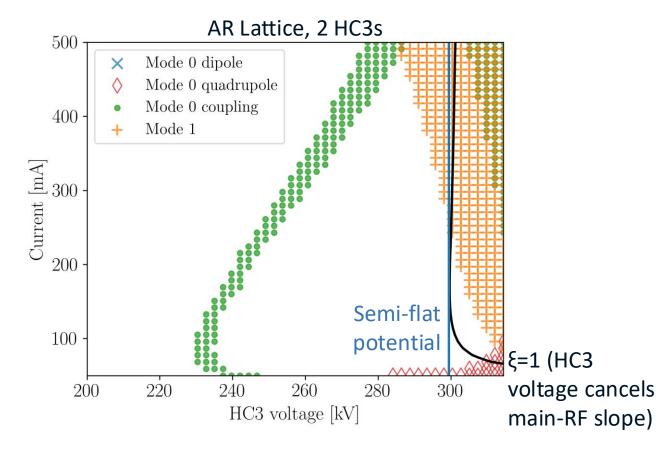
HC5 (Active)


Double-RF



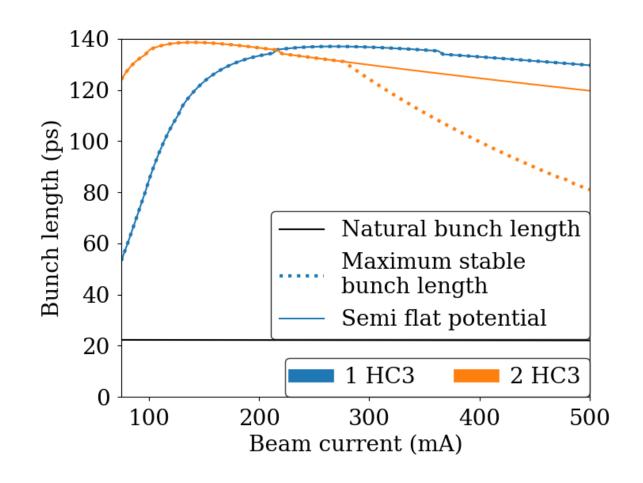
Double-RF with passive HC3

- With $V_{RF} = 1.0$ MV, $U_0 = 450$ keV, ideal HC3 amp around 300 kV
- Example for AR lattice. Factor 6 of lengthening

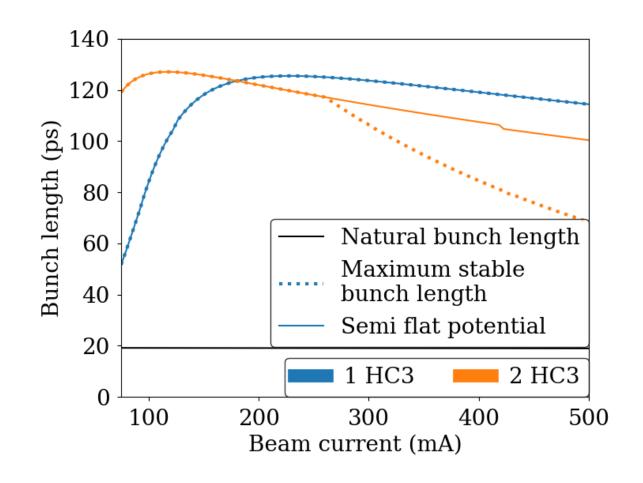


Longitudinal multibunch beam stability

- Stability estimates using Gaussian LMCI model¹
- Bosch grids²: where in parameter-space the beam is predicted to be unstable and why
- Passive HC3 cavities
- Semi-flat potential = correct amplitude but not phase


¹ M. B. Alves, "Theoretical models for longitudinal coupled-bunch instabilities driven by harmonic cavities in electron storage rings", Phys. Rev. Accel. Beams 28 03440 (2025)
² A. Gamelin, V. Gubaidulin, M. B. Alves, T. Olsson, "Semianalytical algorithms to study longitudinal beam instabilities in double rf systems" Phys. Rev. Accel. Beams 28 054401 (2025)

Mode 1: maximum stable bunch lengths – AR Lattice


- Assuming Mode 0 is controlled by mode-0 damper (TBC)
- Flat potential is where HC3 field level is same as for ideal lengthening
- Single HC3 cavity allows semiflat potential to be reached at 500 mA

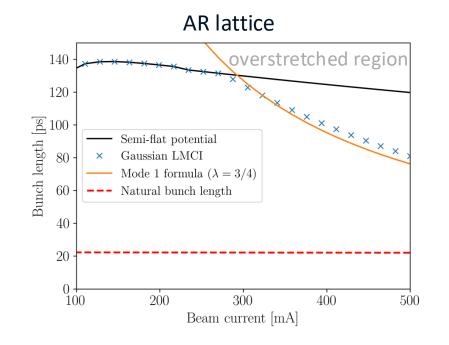
Mode 1: maximum stable bunch lengths – SG Lattice

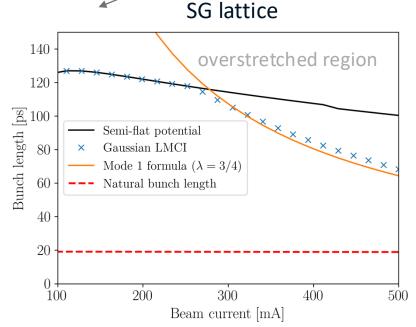
- Assuming Mode 0 is controlled by mode-0 damper (TBC)
- Flat potential is where HC3 field level is same as for ideal lengthening
- Single HC3 cavity allows semiflat potential to be reached at 500 mA

Analytical formula for Mode 1 (PTBL) threshold*

Valid for passive double-RF

"Correction" factor

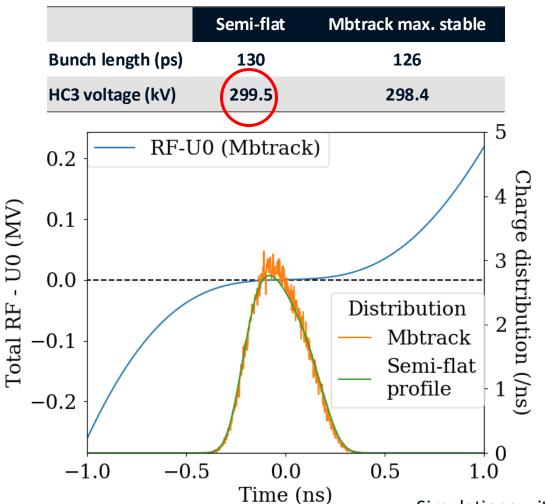

2 HC3s n = 3


 $F_n = 1$

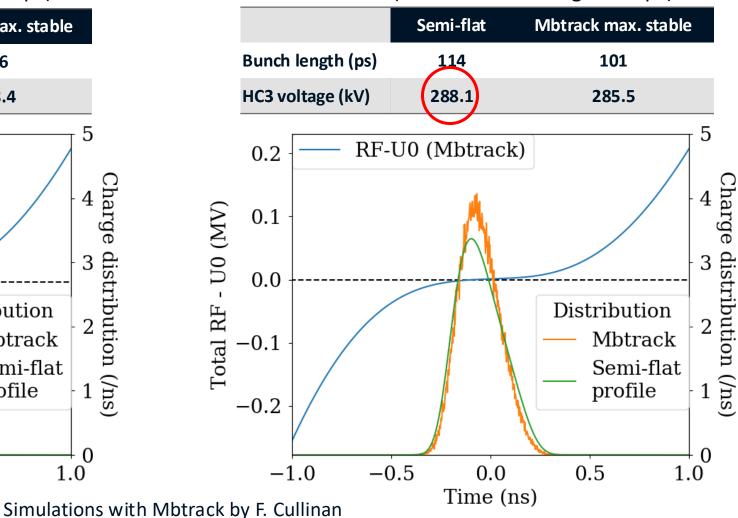
$$\omega_s \sigma_{\tau} = \lambda \alpha \sigma_{\delta}$$

$$\lambda = 1$$
 Linear dynamics Gaussian bunch

$$\lambda = 3/4$$
 Good match with Gaussian LMCI



*Derivation in Appendix B of M. B. Alves, Phys. Rev. Accel. Beams 28 03440 (2025)


Stable bunch profiles with single HC3

SG Lattice (natural bunch length=19 ps)

Triple-RF (work in progress)

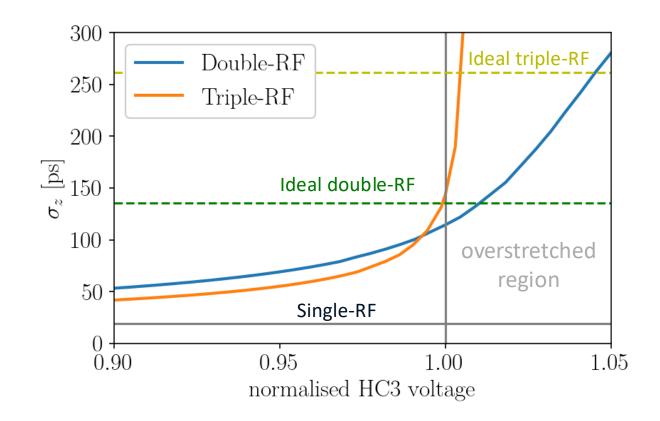
- Given V_{RF} , U_0 and harmonics \rightarrow amplitudes and phases that cancel derivative of total voltage up to Nth order*
- Triple-RF: 4th order, Super-Flat Potential (SFP)

$$V_{RF} = 1.0 \text{ MV}$$

 $U_0 = 450 \text{ keV}$

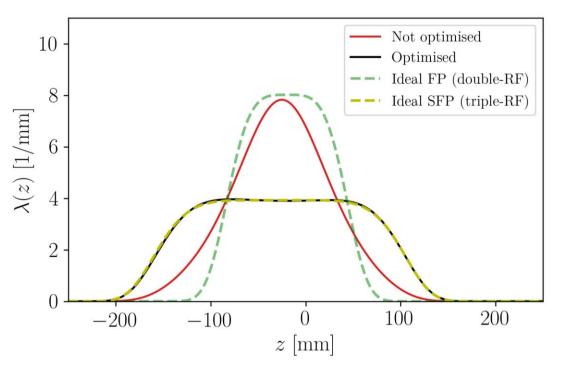
	Main Cavities		3rd harmonic (HC3)		5th harmonic (HC5)	
	Amp [kV]	Phase [deg]	Amp [kV]	Phase [deg]	Amp [kV]	Phase [deg]
Double-RF	1000	149.6	293	-11.1		
Triple-RF	1000	148.2	434	-11.7	86	172.9

- Higher HC3 fields required in a triple-RF
- HC5 must be active


^{*}F. Cullinan, P. Tavares, Å. Andersson, L. Malmgren,

[&]quot;Harmonic Cavity Parameters for Flat Potential to Arbitrary Order" MAX IV Internal Note 20240410

- Main and HC5 (active cavities) set to ideal amplitudes and phases
- Passive HC3 amp adjusted by detuning
- Bunch profiles much more sensitive to HC3 amp/phase variations
- Possible solutions to compensate for this limited control:
 - MC and HC5 adjustments
 - Active HC3s

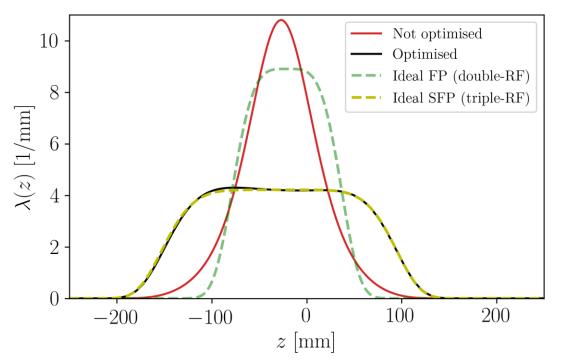


Impact of finite Q factor of cavities - AR Lattice

	RF Voltage [MV]	HC3 Amp [kV]	HC5 Amp [kV]	σ _z ideal FP [ps]	σ_z ideal SFP [ps]	σ _z actual [ps]
Not Optimised	1.00	444.6	88.0	146	275	187 (-32%)
Optimised	1.33	626.5	123.1	133	259	258

- Main and HC5 amps used as optimisation knobs
- Benchmarking with Mbtrack in progress
- High HC3 voltage becomes challenging again

Also studied in He et al., NIM A 1080, 170672 (2025) "Impact of short-range wakefields from radio-frequency cavity resonant modes on bunch lengthening"



Impact of finite Q factor of cavities - SG Lattice

	RF Voltage [MV]	HC3 Amp [kV]	HC5 Amp [kV]	σ_z ideal FP [ps]	σ_z ideal SFP [ps]	σ_z actual [ps]
Not Optimised	1.00	425.9	83.9	135	262	143 (-45%)
Optimised	1.46	679.2	135.0	120	241	240

- Main and HC5 amps used as optimisation knobs
- Benchmarking with Mbtrack in progress
- High HC3 voltage becomes challenging again

Also studied in He *et al.*, *NIM A* **1080**, 170672 (2025) "Impact of short-range" wakefields from radio-frequency cavity resonant modes on bunch lengthening"

Summary and next steps

• Low- α feature of MAX4^U brings challenges to bunch lengthening and stability

Double-RF

- Bunch lengthening: MAX4^U σ_z = 120ps (factor 6) vs. MAX IV R3 σ_z = 180ps (factor 5)
- Mode-0 expected to be controlled with damper
- Mode-1 stable only with single passive HC3

Triple-RF (work in progress)

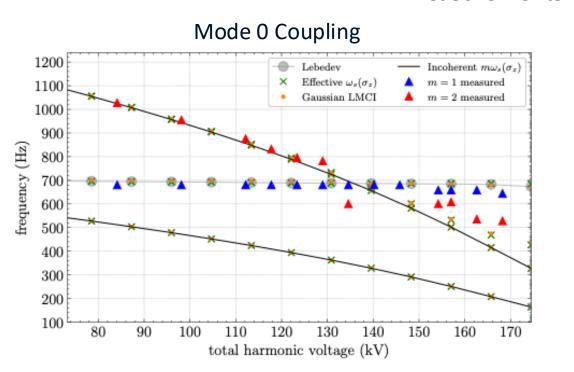
- Much more sensitive to cavity parameters variations than double-RF
- "Short-range wakes" from fundamental modes are relevant and can be compensated

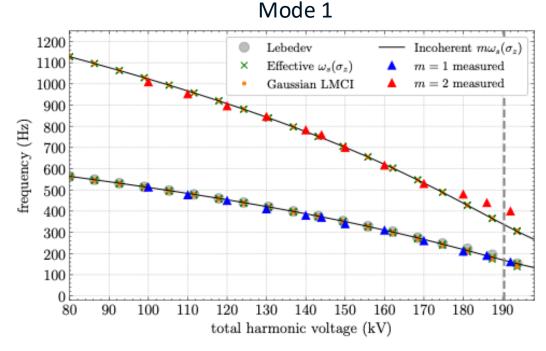
Next steps

- Evaluation of collective beam instabilities with triple-RF system
- o Include full impedance model: Geometric, RW, HOMs, IDs
- Experimental tests
 - Double-RF with 1 HC3
 - Triple-RF system

MAX4^U page

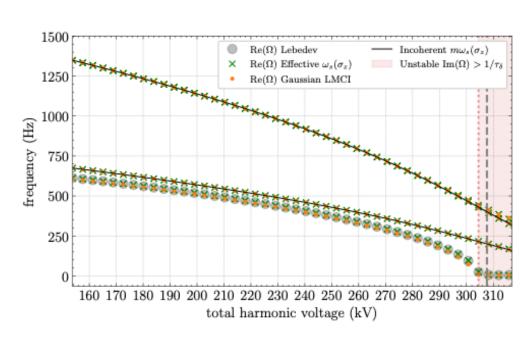
https://www.maxiv.lu.se/beamlines-accelerators/max-4u/


Backup Slides

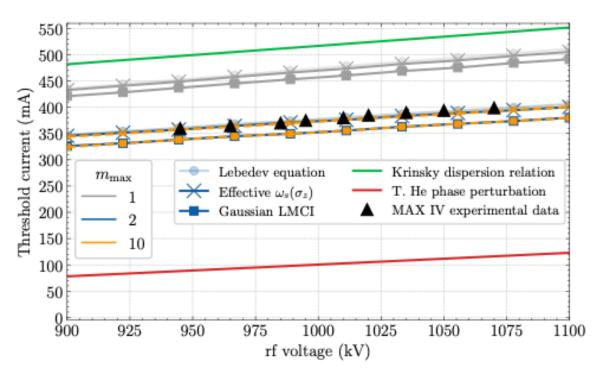


HC3-related instabilities at MAX IV

Measurements below threshold


$$V_{RF} = 650 \text{ kV}, I_0 = 50 \text{ mA}$$

$$V_{RF} = 689 \text{ kV}, I_0 = 90 \text{ mA}$$


M. B. Alves, "Theoretical models for longitudinal coupled-bunch instabilities driven by harmonic cavities in electron storage rings", Phys. Rev. Accel. Beams **28** 03440 (2025)

Mode 1 thresholds at MAX IV

 $V_{RF} = 1.0 \text{ MV}, I_0 = 300 \text{ mA}, 3 \text{ HC3s}$

2 HC3s, V_{RF} = 1.0 MV: 400mA is achieved

M. B. Alves, "Theoretical models for longitudinal coupled-bunch instabilities driven by harmonic cavities in electron storage rings", Phys. Rev. Accel. Beams 28 03440 (2025)