# 28th ESLS RF Workshop

ALBA, 22-24 October 2025

# The ESRF RF System update

Including Linac, Injection/Extraction, Booster and Storage Ring 352 MHz systems

## **Paweł Borowiec**

On behalf of the RF Group











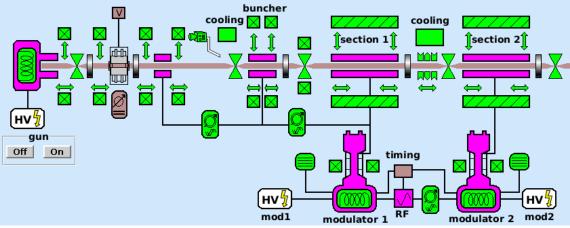
The European Synchrotron

## **OUTLINE**

- > ESRF RF configuration
- Linac configuration and refurbishment program
- Remarkable issues at Linac and Inj/Ext
- > Storage Ring operation and upgrades
- > Other activities
- 4th harmonic project



# **ESRF EBS**








## **LINAC – CONFIGURATION UP TO SUMMER 2025**





## **Background:**

- The Linac is operational since 1988. To anticipate a possible failures the refurbishment program has been introduced.
- Following operational scenarios have been analyzed:
- If section #1 fails, no injection is possible. If section #2 fails, one could try and implement 100 MeV operation with only section #1 active
  - verified, 100 MeV injection is possible
- But no spare accelerating structure of the same type available at the ESRF or in Europe, also manufacturer does not offer it.

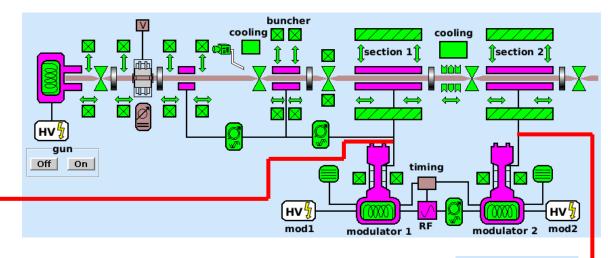
Modulator 3 (backup for Mod.1 or 2)

#### **Preventive action:**

Among many possible scenarios, the following is proposed as the most interesting:

- Purchase of a new accelerating structure shorter structure available on the market, a girder adaptation is needed
- Purchase of a complete, solid-state RF Unit




#### LINAC - FALL BACK SCENARIOS

#### Each modulator from Linac will have its spare



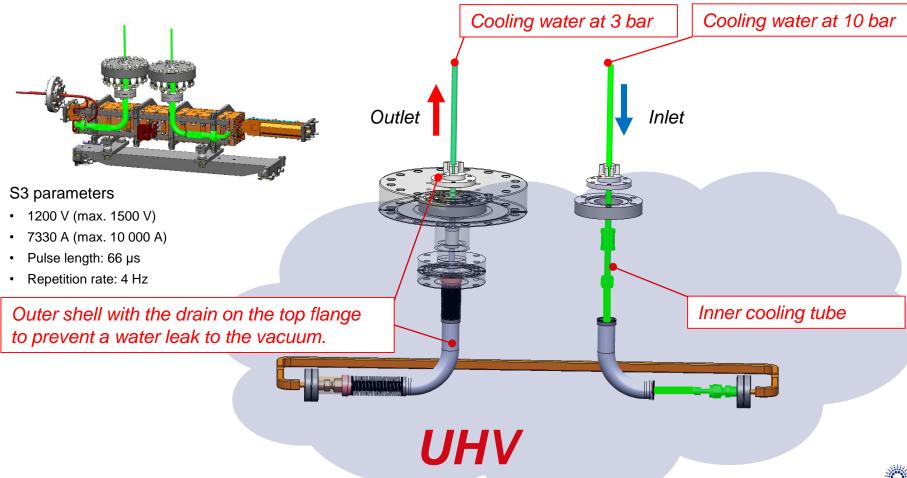
Modulator #3 can operate independently of the Linac operation



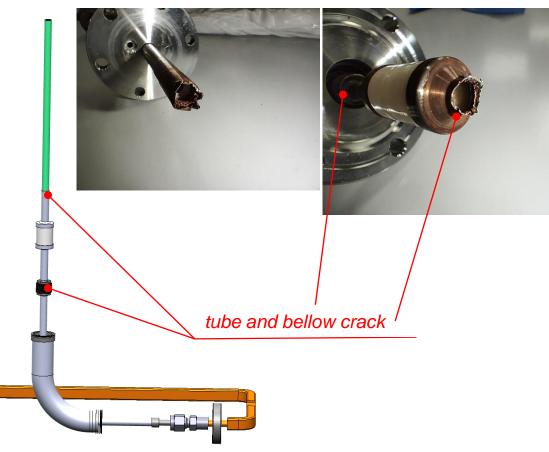


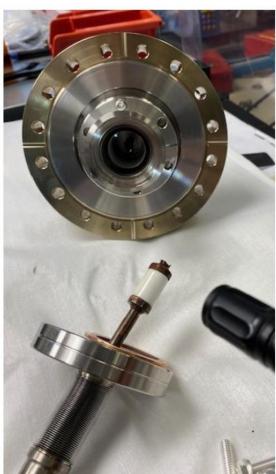
#### Implemented actions:

- Modulator #3 moved to a new position to provide the RF for:
  - Section #1 in the Linac
  - Spare accelerating section during conditioning
- Spare accelerating section -> CFT awarded by RI GmbH
  - All cavities have been machined
  - Brazing and tuning in November
  - Delayed delivery due to lead time of ceramic for the RF window (input splitter)
- Solid state RF Unit -> CFT awarded by ScandiNova Systems AB
  - Canon klystron has been selected
  - FAT accepted with the electrical grid quality remark. Scandinova will install a filter.
  - SAT in November
- Purchase of vacuum chamber to replace any section -> delivered




New RF Unit #0


(backup for


Mod. 2)

# **SEPTUM S3 - CONDUCTOR WATER COOLING**



# **SEPTUM S3 – FINDINGS**



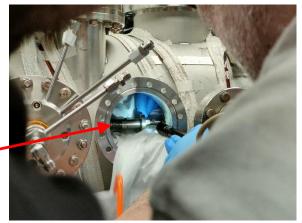


Endoscopic inspection of the outlet tube – no cracks found

# **SEPTUM S3 – PREPARATION FOR NEXT INTERVENTION**

Goal: exchange of the cooling circuit in the tunnel without S3 evacuation

#### **Inventory of spares:**


- 2 complete cooling tubes available.
- Assembled septum magnet available but without above mentioned cooling tubes

**Designing of appropriate tooling** to compress outer tube bellow for tightening of the swagelock and tightening of ConFlat16

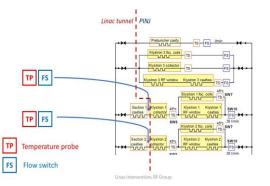
- No access from the top CF needed
- One person operation

Purchase of identified missing tooling, adapters, unions, quick connectors

**Preparation** of a dedicated trolley with all necessary tools to minimize an intervention time









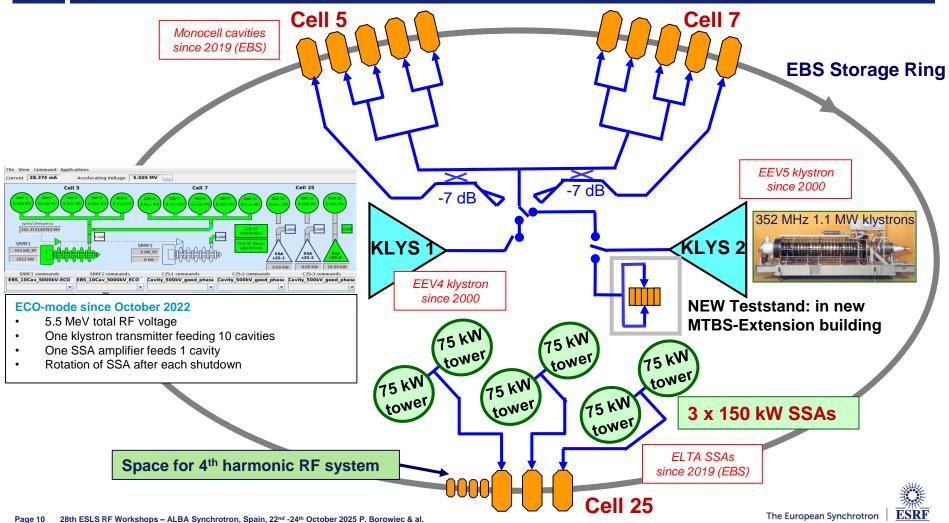



#### **LINAC FAILURES - IMPLEMENTED MITIGATION MEASURES**

- Installation of flow-switches with flowmeters on the outlet of each section modified water manifold. Lack of
  water flow is triggering an interlock, it is visible in the control room.
- Installation of temperature measurements on the outlet of each section. Over-temperature triggers an **alarm**.
- Installation of dedicated PLC to follow also temperatures





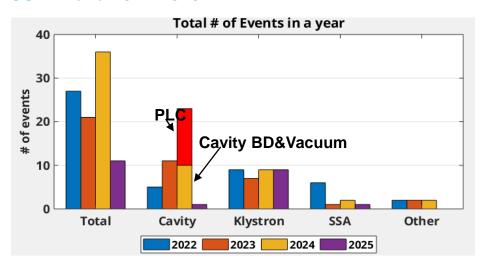



Purchase of the PFN, HV capacitors (custom made) – exchanged.





#### EBS 352 MHz RF SYSTEM LAYOUT - REMINDER

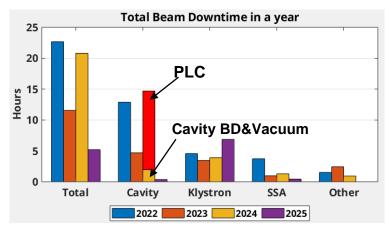



#### **OPERATIONAL STATISTIC**

SSA

During USM, only one issue with the driver of SSA11 the 14th of February lasted 26 minutes this year.

#### **USM Trend 2022-2025**




#### Remarks:

- 1. ECO-Mode implemented in October 2022. This probably explains the significant reduction of the SSA faults from 2023 (only one SSA - cavity system active in operation instead of all three);
- 2. Cavity breakdowns look very much reduced but that is just a matter of luck: almost all breakdowns (7 in total), this year, happened during MDT and are not counted in this statistics:

#### 2025:

- **Mean time** of the failures: <45 minutes:
- Max duration: <2 hours cumulative TRA 2 Ion Pump issue\*.
- \* Two consecutive interlocks form IP1 happened starting from 6:00 am. Around 7:00 am the decision to swap to TRA1 is taken but the operator decided to start the MDT instead, due to the time needed for switching transmitters and have a stable beam: at 8:00 am, MDT would have anyway started.



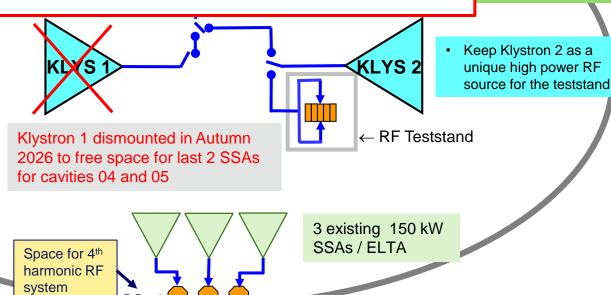


# GRADUAL IMPLEMENTATION OF 10 SSA (EACH 110 KW RF, MAX 250 KW AC)

Cell 5

SAT for each SSA connected to RF power teststand, switching between:

- load with variable mismatch (EH tuner)
- cavity in teststand


# DELAYED

10 new 110 kW 352 MHz SSAs by JEMA France

Cell 7

#### Site preparation accomplished:

- All within existing buildings
- ✓ New transformers and power switchgear rooms under existing roof
- √ 20 kV and 400 V cables.
- ✓ Installation of pre-fabricated water cooling manifolds and piping
- ✓ Waveguide layout designed, building adaptation
- ✓ LLRF and Control system



Cell 25

#### **TESTING OF SPARE KLYSTRONS**

#### Due to a significant delay of JEMA SSAs the program of the spare klystron tests has been relaunched

- EEV-3 klystron installed in Tra2 garage during summer shutdown 2025 it is operating well after 24 years at storage.
- Modification of the external waveguide network to adjust a distance between a klystron output and a circulator input for harmonics compression. It allows an adjustment without opening/closure a klystron garage, which requires a validation by the Radiation Safety each time.

EEV-3 example harmonic #2 compression from -10 dBc to -36.8 dBc by shifting 159 mm (Distance from 2001 did not work)

#### **Spare klystrons status**

| Klystron            | Operating hours counter (40 000 hrs life time) | Remarks                                                         |
|---------------------|------------------------------------------------|-----------------------------------------------------------------|
| EEV-1               | 36410                                          | Next one to be verified in Tra2                                 |
| EEV-3               | 8374                                           | in Tra2                                                         |
| Philips 54-301-53   | <del>36 277</del>                              | Up to 500 kW only, not for EBS                                  |
| Thales - TH 89018-2 | 36340                                          |                                                                 |
| Thales - TH 89022-2 | <del>18 428</del>                              | Breakdowns, not for use. May be a cold conditioning could help. |
| EEV-5               | 18683                                          | Removed from Tra2 08/2025                                       |
| EEV-4               | <del>115153</del>                              | in Tra1. Over its lifetime                                      |

Theoretical, remaining klystrons' operational period ~ 10 years but also aging of auxiliaries.



#### **OTHER ACTIVITIES**

#### RF power coupler repair procedure:

- In-house development technology to exchange a ceramic
- Precise machining and TIG welding a ceramic metal lip to a body
- Dedicated tooling to be used only to this task (UHV conditions)
- Successfuly conditioned up to 150 kW of RF power

#### RF power coupler order:

To qualify manufacturers because of the last order in 2008

# Test stand for two RF system fed simultaneously from independed power sources:

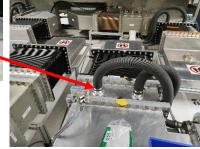
SSA (i.e. during SAT) and klystron transmitter (i.e. coupler conditioning)

# Refurbishment of the essential RF laboratory measurement equipment, CFTs accomplished for:

- VNA with a ports multiplexer, up to 12 channels will be available
- RF phase noise analyzer shipped
- spectrum analyzer delivered

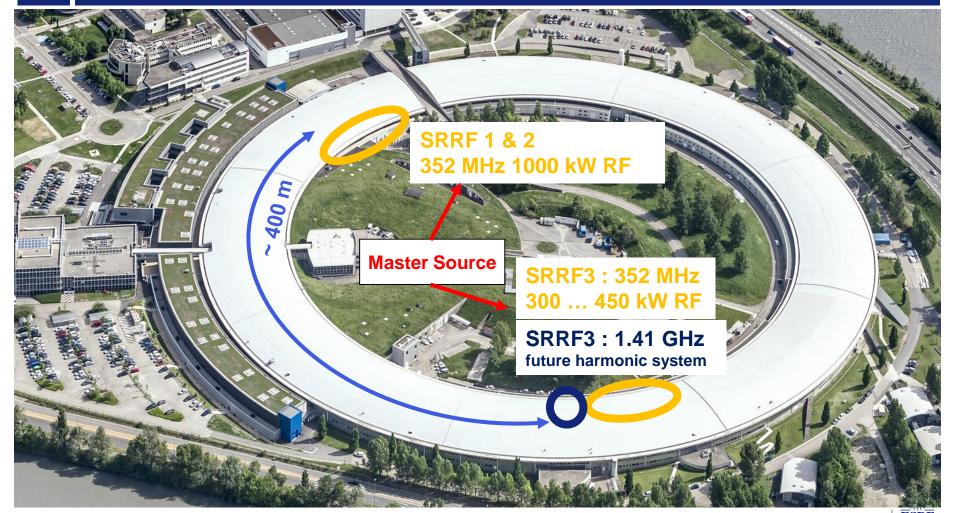
#### Wifi interferences from RF system:

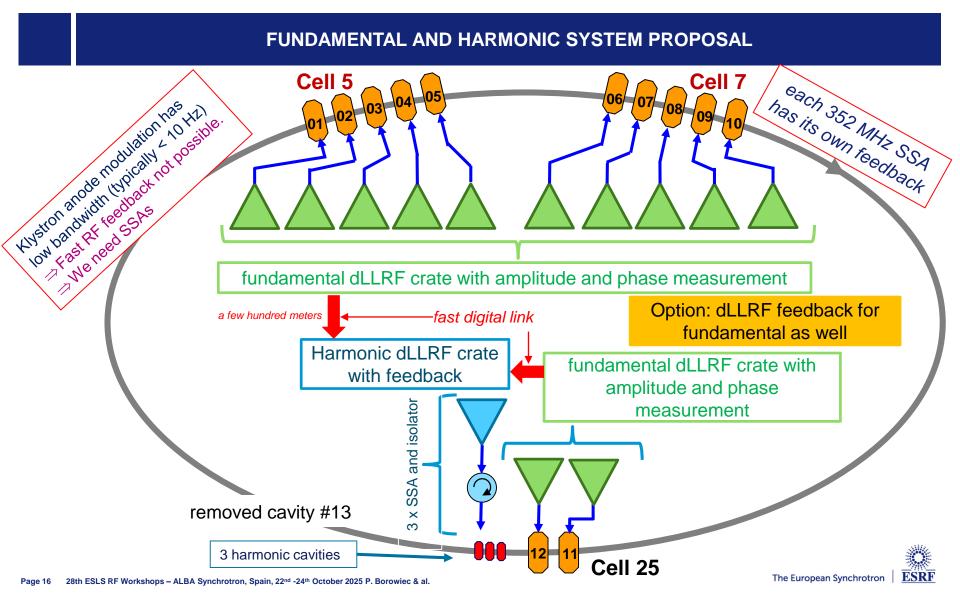
- RF leak point identified a cavities' ceramic air cooling passage in the waveguides
- Low pass filter grid installed



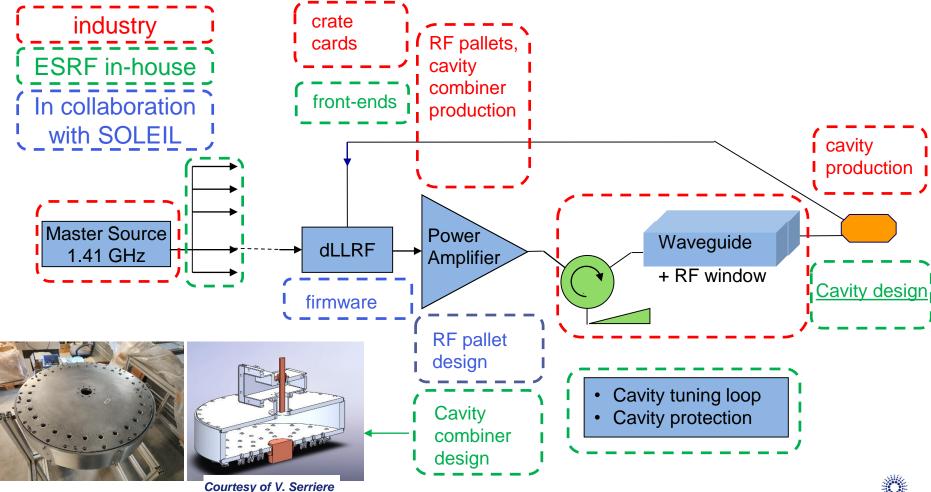







## RF SYSTEM FOR THE EBS STORAGE RING - 352.37 MHz and 1.41 GHz





## HARMONIC SYSTEM COMPONENTS SUPPLIERS



#### **COLLABORATION WITH SOLEIL**

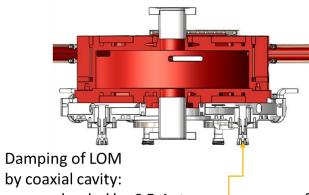
The ESRF is providing the complete cavity design to SOLEIL II machine - <u>accomplished</u>

#### SOLEIL II requirements:

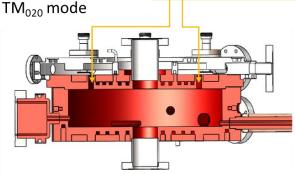
- Two TM<sub>020</sub> single cell cavities @ 1.409 GHz,
- $R/Q = 30 \Omega$  per cell,
- Q0 > 30000,
- $V_{max} = 350 \text{ kV},$
- Longitudinal Impedance < 6 kΩ.GHz per cell,</li>
- One coupler port for RF conditioning.

#### Main challenges:

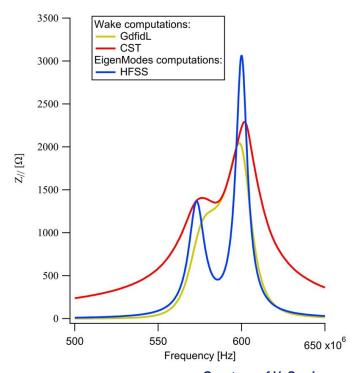
- Strong LOM & HOM damping,
- High Copper Cavity Power to be dissipated.


#### Additional challenge:

- Could we design such a cavity without <u>ferrite</u> for HOM & LOM damping?
- Variable β coupler.


Courtesy of V. Serriere

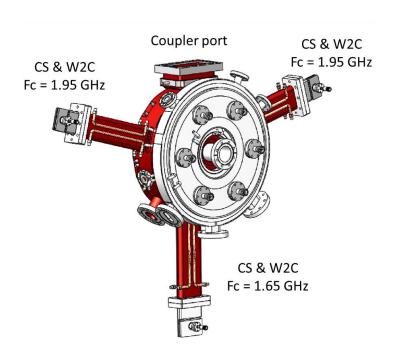



## HHC Design for SOLEIL II - LOM Damping

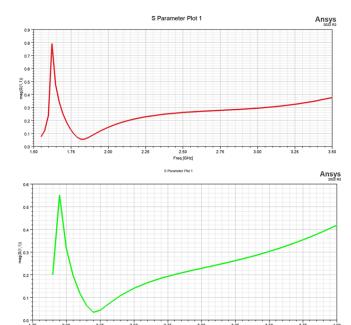


- over loaded by 6 E-Antennas + vacuum feedthrough & 7-16
   Spinner connector
- tuned to have no mode closed to 1.409 GHz
- coupled to the cavity by 2 iris placed on the 'zero' H of the




#### Impedance < 5 times LCBI threshold




Courtesy of V. Serriere



## HHC Design for SOLEIL II - HOM Damping

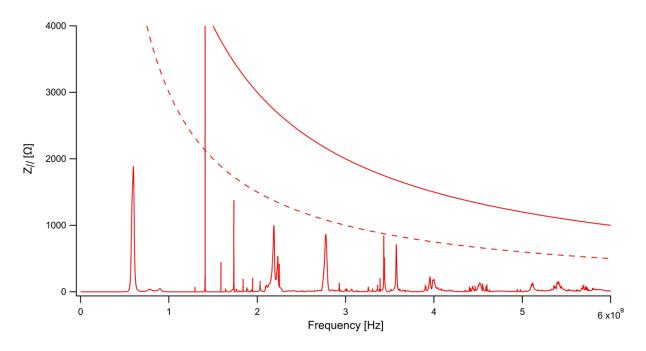


W2C designed to have low reflection closed to cut-off frequency



**CS:** Coupling Section

W2C: Waveguide to Coaxial transition + E-Antenna + Vacuum Feedthrough + N connector


Fc: cut-off frequency

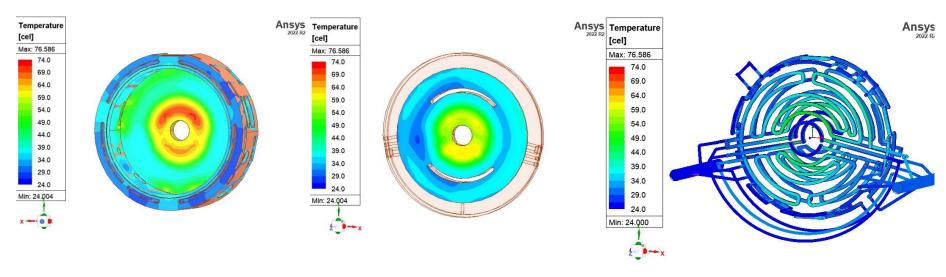
Courtesy of V. Serriere



## HHC Design for SOLEIL II - Longitudinal Impedance

LOM & HOM Impedances below a factor 2 of the LCBI Threshold (SOLEIL II - 2 Cavities Monocell – 500mA)



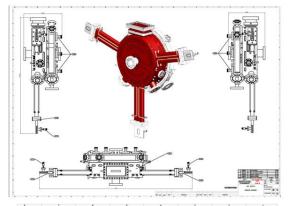

Final TM<sub>020</sub> Impedance: R/Q = 30  $\Omega$  & Q0 = 31500

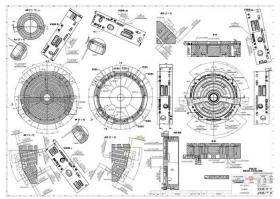
Courtesy of V. Serriere

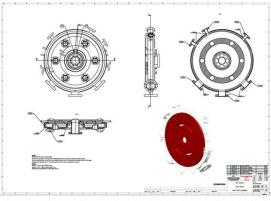


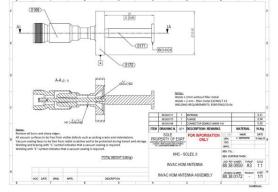
HHC Design for SOLEIL II - Cooling Design

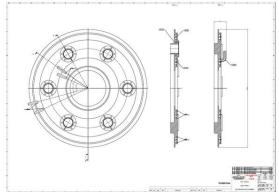
Icepack Simulation with Pc=65 kW and Dp=5 bars on water manifold (DN 30)

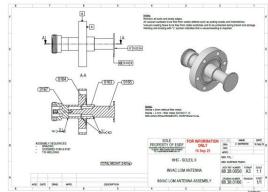




Copper temperature < 74 degC


Watter temperature < 60 degC


The European Synchrotron | ESR


# HHC Design for SOLEIL II - Set of 2D drawings














Courtesy of V. Serriere



## HHC Design for SOLEIL II - Assembly procedure

| E-Beam Welding: 88.38.0053          | TIG Welding: 88.38.0076                             |
|-------------------------------------|-----------------------------------------------------|
| 88.38.0095                          | 88.38.0107                                          |
|                                     | 88.38.0100                                          |
|                                     | 88.38.0114                                          |
| Brazing Step @ temperature T1: 88.  | 38.0072                                             |
| 88.3                                | 38.0081                                             |
| 88.3                                | 38.0087                                             |
| 88.3                                | 38.0090                                             |
| 88.3                                | 38.0102                                             |
| 88.3                                | 38.0094                                             |
| Brazing Step @ temperature T2: 88.3 | 38.0052 <u>TIG Welding</u> : 88.38.0093             |
| Water Leak Test on: 88.38.0052 & 88 | 3.38.0093                                           |
| RF Tuning (adjust frequency by mach | nining the internal radius of 88.38.0052 if needed) |
| Brazing Step @ temperature T3: 88.3 | 38.0051 <u>T1 &gt; T2 &gt; T3</u>                   |
| Vacuum Leak Test on: 88.38.0051     |                                                     |
| FAT                                 |                                                     |

Courtesy of V. Serriere



# MANY THANKS FOR YOUR ATTENTION

