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Introduction
• Motivation to phase contrast hard X-ray microscopy
• Basic concepts: X-ray wave propagation, coherence…

Phase-contrast hard X-ray microscopy
• Zernike phase-contrast microscopy
• Holo-tomography
• Coherent diffraction imaging
• Ptychography

Outlook
• High-brilliance synchrotron sources
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Introduction
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Conventional X-ray microscopy

scanning transmission microscopy (STXM):

• Typically with Fresnel zone plates in the soft X-ray regime (e.g. in the water window)
• Resolution can reach 25-30 nm, but depth of focus limited to about 1 m

full-field microscopy:

M. Uchida et al.,
Yeast 28, 227 (2011)

B. Watts et al.,
Materials Today

15, 148 (2012)
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Imaging bulk samples with hierarchical structures

Thickness from 10 to 100 m

Resolution from 10 to 100 nm

Energy > 2 keV

Challenges:
• Low absorption
• Fabrication aberration-free, 

high-resolution lenses 

Nervous tissue

https://www.livescience.com/52207-faster-3d-
computer-chip.html

Computer chip
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Hard X-ray transmission microscopy with absorption contrast

S. Spence et al., Nanotechnol. 32, 442003 (2021) V. De Andrade et al., Adv. Mater. 33, 2008653 (2021)
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Absorption and phase contrast

Image from “Phase-contrast X-ray imaging” in Wikipedia: 
https://en.wikipedia.org/wiki/Phase-contrast_X-ray_imaging

t

pixelated 
detector

For hard X-rays:  >> 
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Full-field microscopy with Zernike phase contrast

M. Stampanoni et al., Phys. Rev. B 81, 140105(R) (2010) 

• Holes matching custom illumination
• The transmitted beam goes through the holes
• The beam which is refracted by the sample go through the phase-shift mask
• Both parts contribute to a phase-contrast image on the detector
• Low coherence requirement. Problems if the beam has a high degree of coherence
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Wave propagation reveals phase contrast

z

Near field:

a

Fresnel:

Far field or 
Fraunhofer:

Figure adapted from P. Willmott, “An Introduction to 
Synchrotron Radiation”, Wiley (2011) p. 314 



Transversal coherence
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J. F. Van der Veen & F. Pfeiffer
J. Phys.: Condens. Matter 16, 5003 (2004)

extended
source

Transversal coherence length:
Maximum distance between two slits 
such that they produce constructive 
interference when illuminated by an 
extended source size

double
slit

far field



Transversal coherence
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J. F. Van der Veen & F. Pfeiffer
J. Phys.: Condens. Matter 16, 5003 (2004)

extended
source

Transversal coherence length:

double
slit

far field

 = 1 Å
R = 50 m
wv = 20 m ➔ v = 250 m
wh = 200 m ➔ h = 25 m
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Propagation-based phase contrast

• Interference between refracted wave and incoming beam: aka in-line holography
• Intensity fringes build up in the near field, especially at the edges of the sample

(*)

(*) See e.g. P. C. Diemoz et al., Opt. Express 20, 2789 (2012)

wave-front intensity


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Propagation-based phase contrast 

P. Cloetens et al.,
PNAS 103, 14626 (2006)

P. Cloetens et al., J. Phys D: Appl. Phys 32, A145 (1999)

Polystyrene foam
 = 0.69 Å

d = 0.01 m d = 0.12 m d = 0.22 m d = 0.91 m
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Propagation-based phase contrast: holotomography

Quantitative phase image 
obtained with a 
reconstruction algorithm Tomographic reconstruction

Slice through tomographic 
reconstruction

P. Cloetens et al., J. Phys D: Appl. Phys 32, A145 (1999) 

P. Cloetens et al., Appl. Phys. Lett. 75 1912 (1999)
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Propagation-based imaging with magnification

M. Langer et al., PLOS ONE 7, e35691 (2012)
R. Mokso et al., Appl. Phys. Lett. 90, 144104 (2007)

• Focused beam creates divergent 
illumination onto the specimen

• Resolution limited to focus size
• Similar algorithms as in propagation-

based phase-contrast imaging
• Equivalent propagation distance D 

and magnification M:

Also knows as holo-nanotomography

10 m

A. T. Kuan et al.,
Nat. Neurosci. 23, 1637-1643 (2020)
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Lens- or focusing-based hard X-ray microscopy methods

Full-field microscopy with Zernike phase-contrast
M. Stampanoni et al., Phys. Rev. B 81, 140105(R) (2010) 

Nano-holotomography
M. Langer et al., PLOS ONE 7, e35691 (2012)
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Wave propagation reveals phase contrast

z

Near field:

a

Fresnel:

Far field or 
Fraunhofer:

Figure adapted from P. Willmott, “An Introduction to 
Synchrotron Radiation”, Wiley (2011) p. 314 
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Coherent diffraction imaging (CDI)

J.R. Fienup Appl. Opt. 21, 2758 (1956)

J. Miao et al., Nature 400, 342 (1999)

Iterative phase retrieval algorithm
support constraint oversampling

Sample consisting of
100 nm Au nanodots

• Resolution not limited by optics
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Coherent diffraction imaging (CDI) on single cells 

• Metal-coated polymer micro-sphere

H. Jiang et al., 
PNAS 107, 11234 (2010) 

E. T. B. Skjønsfjell et al., 
J. Opt. Soc. Am. A 35, 7-17 (2018) 
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Bragg coherent diffraction imaging (Bragg CDI)

Incident

beam

detector



2

3D displacement field in nano-crystals

M. Pfeifer et al., Nature 442 (2006) 63

(*) http://www.tf.unikiel.de/matwis/amat/def_en/kap_5/backbone/r5_2_1.html

Image 
source(*)

displacement 
field
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CDI: practical limitations

J.R. Fienup,
Appl. Opt. 21, 2758 (1956)
J. Miao et al., 
Nature 400, 342 (1999)

Iterative phase 
retrieval algorithmsupport constraint oversampling

• Nyquist sampling                                                      confined sample

• Typical beamline setups
• Sample-detector ~ 5 m
• Pixel size ~ 50 m
• Wavelength ~ 1-2 Å

Sample size < a few micron

3 mm

• Convergence  These limitations can be overcome using 
a modulator or a structured illumination



07.04.2025Seminar at ALBA22

Ptychography

Coherent diffraction patterns from       
overlapping illuminated areas

• Absorption and phase contrast
• Resolution not limited by a lens!
• In practice limited by mechanical stability and thermal drifts

H. M. L. Faulkner & J. M. Rodenburg,
Phys. Rev. Lett. 93, 023903 (2004)

Iterative phase retrieval algorithms to 
reconstruct complex-valued transmissivity
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A typical X-ray ptychography setup

J. Vila-Comamala et al., Opt. Express 19, 21333 (2011)

f = 40 – 60 mm 2 – 7 m

10 mm

coherent flux:
5×108 photons/s
@ 6.2 keV
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Simultaneous probe reconstruction with ptychography

8 nm resolution
2×2 m area
4 min

Phase image Illumination beam
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Ptychographic X-ray computed tomography (PXCT)

M. Dierolf et al., Nature 467 (2010) 436

Energy: 6.2 keV

10 m

Voxel size: 65 nm
Resolution: 120 nm
Dose: 2MGy

Pilatus 2M

10 m

Mouse bone specimen

5 m
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Instrumentation for PXCT

OMNY: tOMography Nano crYo stage 

• Laser interferometry for relative 
positioning of sample and 
illumination optics
• Aimed 3D resolution: 10 nm
• Cryo stage in ultra-high vacuum
• First test setup in air at room 
temperature, still in user operation

M. Holler and J. Raabe

M. Holler et al., Rev. Sci. Instrum. 83, 073703 (2012)
M. Holler et al., Rev. Sci. Instrum. 89, 043706 (2018)
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Image processing for PXCT

M. Guizar-Sicairos et al.,
Opt. Express 19, 21345 (2011)
M. Odstrčil et al., 
Opt. Express 27, 36637 (2019)

• Robust algorithms for online processing
• Sample needs to be surrounded by air on 

both sides at all angles 
• Tomographic reconstructions are provided 

to the user during the experiment
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Detection of synapses in stained, resin-embedded tissue

3D electron density map

C. Bosch et al., 
bioRxiv (2024) doi: 10.1101/2023.11.16.567403
(in review)

38 nm resolution
absorbed dose: 2.5×109 Gy 

1 m

• Novel sample preparation with radiation-hard resin
• Non-rigid tomographic reconstruction for sample 

deforming during acquisition

Adrian
Wanner
PSI

Tomas 
Aidukas
PSI

Carles 
Bosch
Francis Crick 
Institute



PXCT on 7 nm-node chip
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T. Aidukas et al., Nature 632, 81 (2024) 1 m

100 nm

4 nm 3D resolution
Burst ptychography
Record in hard X-ray microscopy Tomas 

Aidukas
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CDI vs ptychography

H. Jiang et al., PNAS 107, 11234 
(2010)

M. Guizar-Sicairos et al.,
Opt. Express 19, 21345 (2011)

coherent diffraction imaging ptychography

Removal of constant 

and linear terms

• 3D reconstruction from 3D reciprocal space: very 
robust to positioning accuracy

• Limited to isolated samples of a few microns  

• Requires cutting-edge instrumentation for high-
resolution scanning + rotation

• Applicable to large samples
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Near-field ptychography

Nano-holotomography
M. Langer et al., PLOS ONE 7, e35691 (2012)

Near-field ptychography
M. Stockmar et al., Sci. Rep. 3, 1927 (2013)

5 m



Comparing PXCT and nano-holotomography
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• Similar spatial resolution ~ 100 nm
• 2.5x less dose with ptycho-tomo
• 16x faster with holo-tomography (in resels/s)

ptycho-tomography
@ 6.2 keV

108 nm, 3.3e7 Gy

holo-tomography
@ 17 keV

121 nm, 8.6e7 Gy
102.6 m

Collaboration with

A. Pacureanu (ESRF, France)

C. Bosch & A. Schaefer (Francis Crick Inst., UK)

Manuscript in review

Alexandra
Pacureanu
ESRF

Heavy-metal-stained brain tissue



The upgrade: SLS 2.0 and cSAXS 2.0
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• ~ 30× more coherent flux with SLS 2.0 

• ~ 3× more flux with new U17 undulator

• ~ 10× more flux with more efficient optics for PXCT

• ~ 40× more flux with broadband option

• Better beam stability

Slide courtesy of Benedikt Rösner



Benefits of upgraded source
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J. Vila-Comamala et al., Opt. Express 19, 21333 (2011)

coherent flux:
5×10810 photons/s
@ 6.2 keV

Radiation damage
Detector saturation
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Proposals to overcome the challenge of high photon flux

I. Scan faster careful, same flux density (photons/s/m2) 

II. Spread flux on sample and on detector no high-resolution scanning probe possible 

Far/near-field ptycho
holotomography

high energy

MLL

large illumination 

large sample-
detector distance 

large
single photon counting 
detector 

CoDi 



X-ray ptychography

Extended samples
Good convergence
Challenging experiment

Coherent diffraction 
imaging (CDI)
Confined, small sample
Convergence issues
Ongoing developments

X-ray holo-
nanotomography (XNH)
Fast measurements
Phase contrast
Resolution limited by focus

S. Spence et al., 
Nanotechnol. 32, 442003 
(2021)

Transmission X-ray 
microscopy (TXM)
Very fast measurements
Inherently dose inefficient
Resolution limited by lens

Conclusions – high-resolution hard X-ray microscopy 
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A. T. Kuan et al., Nat. 
Neurosci. 23, 1637-1643 
(2020)

H. Jiang et al., 
PNAS 107, 11234 (2010) 

T. Aidukas et al.,
Nature 632, 81 (2024)

Thank you for your attention
Questions?
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