
WebX
X11 desktop on the web

Developed as part of the OSCARS European Project

3rd June 2025

VISA Meeting 2025 @ ALBA Synchrotron



Outline
● Motivations

○ Remote Desktop solutions and development ideas
● X11 / Xlib overview

○ Concepts for a Remote Desktop solution
● WebX Engine Design

○ From X11 to ZeroMQ sockets
● WebX System Architecture

○ Remote Desktop in the browser
● WebX Features

○ Fast and efficient image streams with jpeg-turbo (including 
transparency)

○ Quality levels and window coverage/visibility
○ Messaging

● Demo



● Ideas first started in 2019 during PaNOSC
○ Is it possible to record and replay desktop activity (reproducible data analysis)
○ Is it possible to improve on Guacamole:

■ Why encode/decode into base64 rather than use binary data?
■ Why does moving windows around produce so much data/use so much CPU?

● Development started as a PoC but quickly showed promise
○ CPU usage seen to be low
○ Latency (compared to Guacamole) very good
○ User experience much better

■ Window tearing gone
■ Image quality good
■ Interactions more fluid

● Development over the years has been 
sporadic

○ Session management 
○ Multi-client and variable bandwidth managed
○ Now ready for production use

Motivations
Not just a nice dev exercise

2019 2022 2025



Motivations
Alternative Open-Source Remote Desktop Solutions

● Analysis of existing Open Source Remote Desktop solutions
○ Guacamole
○ Rustdesk
○ NoVNC
○ Selkies-Gstreamer
○ KasmVNC

● Often good quality products with nice features
○ Eg KasmVNC has resizing and multi-screen support

● None provide a perfect solution for integration into VISA
○ Some missing web clients
○ Some missing relay capabilities (needed to manage access rules/notifications)
○ Some missing session management and multi-client support
○ All (except NoVNC) use 100% CPU when moving windows or during graphical 

updates



X11 / Xlib overview
Growing ideas for WebX 

● 2 main concepts behind WebX:
○ Obtain a list of windows including their position and sizes
○ Obtain graphical content of each window

● Xlib provides low-level access to X11 window management to:
○ Obtain a tree of windows
○ Obtain image data for window (full or partial)
○ Subscribe to change notifications

■ Window creation/deletion
■ Window move/resize
■ Window damage (content modification)

○ Handle mouse events
○ Handle keyboard events

● Provides simple basis to develop the WebX Engine: a window-based 
remote desktop solution

○ Obtain window information from Xlib
○ Transfer information to connected clients
○ Avoid the common effect seen in other solutions where moving windows around a 

screen consumes CPU and high bandwidth



WebX Engine Design
From X11 to ZMQ

● ZeroMQ concurrency framework
○ Network patterns over sockets
○ publisher/subscriber & request/response

● WebX Engine control loop:
○ Client instructions

■ mouse and keyboard
○ X11 window events

■ Created / Deleted
■ Movement / Resize
■ Damage

○ Notify clients of layout changes
○ Client pinging and quality check
○ Client window updates

■ Send image data (timed)
○ Sleep 

● Runs at 60fps
○ Client window updates less frequent

1. Client 
instructions

2. X11 
events

3. Layout 
notification

4. Client 
pinging

5.Window 
updates

6. Sleep

Controller

ZeroMQ Transport layer

Xlib



Low quality groupHigh quality group

WebX Engine Design
Client management

● Clients grouped by Quality level
○ Window content refresh rate
○ Image quality
○ Bitrate capping (per window)

● Each client-group maintains a 
representation of the desktop

○ All visible windows containing:
■ Damaged area
■ Quality handler (bitrate 

dependent)
○ Calculate total Mbps for all window 

updates
● Need to determine which group a 

client belongs to

windows and damage

Max quality level 10
Window update: 15 fps

Max window data: 12 Mbps
Image Quality: 0.9

app window

windows and damage

Max quality level 4
Window update: 5 fps

Max window data: 2 Mbps
Image Quality: 0.6

app window

app window

app window
app window

app window

Same window layout, different damage 
areas, data rates and quality



WebX Engine Design
Client management

● Client pinging
○ Ensures client list is always valid
○ Determines client latency

● Estimation of client bitrate
○ Measure timing of image transfer
○ Automatic adjustment to client group

● Downgrade client to lower quality if 
group egress bitrate close to or 
above client ingress bitrate

Client

Engine

∆t ping (40B)

Client

Engine

∆t image transfer (> 32KB)

ping/pong message timing

image/ack message timing

7.5 Mbps 2.3 Mbps

app window
app window

app window



VM1

WebX System Architecture
How the Remote Desktop appears in a browser 

webx-client

webx-client

webx-client

Application Server
webx-session-

manager

webx-router webx-engine

Backend Application (eg 
visa-api)

webx-relay

webx-engine

webx-client

X11

X11

VM2

webx-session-
manager

webx-router webx-engine

X11

websockets TCP sockets
(ZeroMQ)



WebX Features
Fast and efficient image streaming with libjpeg-turbo

● X11 produces window damage events
○ Graphical updates to parts of windows (rectangles within the window)

● WebX combines the rectangles over N controller loops
○ Clients notification time depends on quality level

● Xlib grabs raw window rectangle bitmaps
● Libjpeg-turbo converts/compresses images

○ Uses SIMD instructions for extremely quick conversion (~4ms)
○ Really low CPU usage

● But Jpeg has no alpha channel… how to handle 
transparency?

○ Hack the initial RGBA bitmaps to remove RGB
○ Offset pointer to image data by 2 bytes (shift alpha channel to green)
○ Generate a second Jpeg: an alpha-map used by three.js in the 

webx-client
● Send combined images in single binary message to clients
● Recombine images using WebGL 

app window



WebX Features
Quality levels and window coverage/visibility

● 12 pre-defined quality levels

● Each window measures generated bitrate
○ Reduces quality if data rate exceeded

● Window coverage reduces quality
○ Mouse over window increases quality

Highest Quality Lowest Quality

Window refresh fps 30 0.5

Image quality 0.9 0.4

Data rate 24 Mbps 0.5 Mbps

app window

app window
app window

app window

100% visible: Max Quality

10% visible: Quality 2



WebX Features
Messaging

● All messages are binary
○ Efficient and very quick serialisation and 

deserialisation
● Each client has a unique Index

○ 8 bytes => 64 clients
● Each message contains

○ bitmask corresponding to destination 
clients

○ Unique Session Id (16 bytes)
● Webx-relay filters clients that match 

bitmask and Session Id
○ Messages can be directed to individuals 

(pings), groups (window images) or all 
(window layout)

Content Usage

Screen message Screen size, Max 
Quality

Initialises the client

Image and 
SubImage 
Messages

Full window image 
or partial window 
images

Sent when window 
content changes

Windows message Window layout 
(coordinates and 
sizes)

Sent of window 
move / resize

Mouse and Cursor 
Image Messages

Mouse position / 
cursor Id and 
Cursor Jpeg

Sent when mouse 
moves or cursor 
changes

Ping Timestamp Ensure client 
connected and 
determine latency

Clipboard X11 Clipboard 
content

Synchronisation 
with client clipboard

webx-relay webx-engine

Message 
data



Thanks
Time for a demo

VISA Meeting 2025 @ ALBA


