REXS 2025 Almadraba

Contribution ID: 119 Contribution code: Chairs: Claudio Mazzoli, Valerio Scagnoli

Type: Oral

Helicities of Magnetic Skyrmion Lattices Studied by Circularly Polarized Resonant X-ray Scattering

Thursday, 9 October 2025 09:35 (25 minutes)

In noncentrosymmetric magnetic materials, various types of nontrivial magnetic structures are realized as a result of competing interactions of symmetric magnetic exchange interaction, Dzyaloshinskii-Moriya type antisymmetric exchange interaction, and Zeeman energy in external magnetic fields, especially in Gd and Eu compounds with weak crystal field anisotropy. In many cases, they are non-collinear or non-coplanar structures associated with incommensurate spiral ordering. In this talk, we focus on the tetragonal EuTGe3 family without an inversion center but with mirror planes including the c-axis (space group I4mm). From our recent studies on EuIrGe3, EuNiGe3, and EuRhGe3, using circularly polarized resonant X-ray diffraction to investigate magnetic helicities, it was clarified that each compound exhibits distinctive ordering phenomena reflecting competing interactions. In EuIrGe3, successive transitions take place from sinusoidal (m \parallel c) to cycloidal (m \parallel ac or bc) structures with a tiny reorientation of the propagation vector from q=(0, 0, 0.792) to (0.017, 0, 0.792). Each of the four cycloidal domains has its own helicity. In EuNiGe3, single-q helical ordering at zero field with q=(0.26, 0.053, 0) transforms into a triple-q distorted triangular skyrmion lattice state in a magnetic field. Surprisingly, the original helicity at zero field is reversed to form a skyrmion lattice with unified helicity. In EuRhGe3, in contrast, the helical order propagating along the c-axis is free from the antisymmetric interaction.

REFERENCES

- 1. T. Matsumura et al., J. Phys. Soc. Jpn. 91, 073703 (2022). (arXiv:2206.06596).
- 2. K. Kurauchi et al., J. Phys. Soc. Jpn. 92, 083701 (2023). (arXiv:2306.12669).
- 3. T. Matsumura et al., J. Phys. Soc. Jpn. 93, 074705 (2024). (Open Select).

Primary author: MATSUMURA, Takeshi

Presenter: MATSUMURA, Takeshi

Session Classification: Talks Thursday Morning