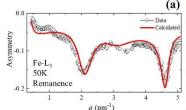
## **Spiral Spin Structure in Dy-Doped Spinel-Ferrite**


Anupam K. Singh<sup>1,2</sup>, Katayoon Mohseni<sup>1</sup>, Verena Ney<sup>2</sup>, Andreas Ney<sup>2</sup>, Arthur Ernst<sup>2</sup>, Malleshwararao Tangi<sup>1</sup>, Yicheng Guan<sup>1</sup>, Ilya Kostanvoskiy<sup>1</sup>, Mostafa I. S. Marzouk<sup>1</sup>, Manuel Valvidares<sup>3</sup>, Pierluigi Gargiani<sup>3</sup>, J. M. Tonnerre<sup>4</sup>, Holger L. Meyerheim<sup>1</sup> and Stuart S. P. Parkin<sup>1</sup>


<sup>1</sup>Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
<sup>2</sup>Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
<sup>3</sup>ALBA Synchrotron Light Source, E-08290 Cerdanyola del Valle's, Barcelona, Spain
<sup>4</sup>Institut Neel, CNRS et Universite Joseph Fourier, BP. 166, 38042 Grenoble Cedex 9, France

## **ABSTRACT**

Noncollinear spin structures have received tremendous interest in recent years as they provide a versatile platform for spin control and manipulation desirable for spintronics1. Realization of noncollinearity in ferrimagnetic insulators is of particular interest as the combined effect of both ferro- and antiferromagnetic orders opens up opportunities for their potential utilization in low-damping spintronic devices with desirable magnetic order and minimal stray fields<sup>2</sup>. Inverse spinel nickel ferrite is a classical ferrimagnetic insulator with a collinear in-plane magnetic structure<sup>3</sup>. The substitution of Zn and Al in the nickel ferrite (NiZAF) makes it an excellent choice especially for low-damping spintronics<sup>4</sup>. However, the realization of noncollinearity together with low-damping has remained challenging so far. Here we show the evidence of noncollinearity in the ultrathin films (3-5 nm thickness) of NiZAF induced by the rare earth ion Dy3+-doping. Motivated by our in-house laboratory measurements (SQUID and MOKE) and XMCD experiments using synchrotron x-rays, we performed soft x-ray resonant magnetic reflectivity (XRMR)<sup>5</sup> and related simulations to probe the magnetic depth profile. The magnetic asymmetry analysis for the Fe-L<sub>3</sub> edge (Fig. 1a) using Dyna software shows nice agreement for a model considering an in-plane spiral-type spin structure with weak out-of-plane magnetization component, confirming the noncollinear (and noncoplanar) spinconfiguration in the Dy-doped NiZAF. This spiral spin structure for the Fe-spins is sketched in Fig. 1b. We attribute the stabilization of such noncollinearity to the formation of a local strain field created by the Dy3+ (evidenced by Dy-L3 EXAFS analysis) thereby involving local spaceinversion symmetry breaking and emergence of asymmetric Dzyaloshinskii-Moriya interaction. This is supported by our first-principle DFT calculations. The realization of noncollinear spin structure in the insulating spinel-ferrite opens further pathway to explore the possibility of chiral magnetic domain and topological spin textures (e.g., skyrmions) potential for the oxide-based spintronic applications.

This work is supported by the **DFG** (grant no. Mo 4198/2-1) and **FWF** (grant no. I-5384).





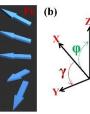



Fig. 1. (a) Magnetic asymmetry fitting (refined parameters are shown right-side) at 50 K for the Fe-L<sub>3</sub> edge in the remanence state for 5% Dydoped sample. (b) Schematic view of spin structure for Fe where axis model is shown.

## REFERENCES

- [1]. A. Fert, N. Reyren and V. Cros, Nat. Rev. Mater. 2, 17031 (2017). [2]. S. K. Kim et al. Nat. Mater. 21, 24-34 (2022).
- [3]. Y. Yafet and C. Kittel, Phys. Rev. 87, 290-294 (1952). [4]. S. Emori et al., Adv. Mater. 29, 1701130 (2017).
- [5]. J.-M. Tonnerre et al., Eur. Phys. J. -Spec. Top. 208, 177-187 (2012).