Hunds rules - Term symbols with maximum spin S are lowest in energy, - Among these terms: Term symbols with maximum L are lowest in energy - In the presence of spin-orbit coupling, the lowest term has - J = |L-S| if the shell is less than half full - **J** = **L+S** if the shell is more than half full max S > max L > max J (if more than half full) What is the Hund's rule ground states for 3d²? | 2 1 | 1 🕇 | 0 ↑ | -1 ↑ | -2 ↑ | |-----|-----|-----|------|-------------| | 2 ↓ | 1 🔱 | 0 🗸 | -1 ↓ | -2 ↓ | max S > max L > max J (if more than half full) What is the Hund's rule ground states for 3d²? | 2 ↑ | 1 🕇 | 0 ↑ | -1 ↑ | -2 ↑ | |-----|-----|----------|-------------|-------------| | 2 ↓ | 1 ↓ | → | -1 | -2 ↓ | $$J=2$$ Term symbol = ${}^{3}F_{2}$ max S > max L > max J (if more than half full) What is the Hund's rule ground states for 3d²? | 2 ↑ | 1 🕇 | 0 1 | -1 ↑ | -2 ↑ | |-----|-----|-----|------|-------------| | 2 ↓ | 1 🔱 | 0 → | -1 ↓ | -2 ↓ | $$f_k = (2l_1+1)(2l_2+1)(-1)^L \begin{pmatrix} l_1 & k & l_1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_2 & k & l_2 \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} l_1 & l_2 & L \\ l_2 & l_1 & k \end{cases}$$ | | What is the Hund's rule ground states for 3d ² ? | | | | |------------|---|--|--|--| | | f_2 | f_4 | | | | ıS | $\frac{10}{7} \begin{cases} 2 & 2 & 0 \\ 2 & 2 & 2 \end{cases} \qquad 2/7$ | $\frac{10}{7} \begin{cases} 2 & 2 & 0 \\ 2 & 2 & 4 \end{cases} $ 2/7 | | | | 3 P | $-\frac{10}{7}$ $\left\{ \begin{array}{ccc} 2 & 2 & 1 \\ 2 & 2 & 2 \end{array} \right\}$ 3/21 | $-\frac{10}{7}$ $\left\{ \begin{array}{ccc} 2 & 2 & 1 \\ 2 & 2 & 4 \end{array} \right\}$ $-4/21$ | | | $$-\frac{10}{7} \begin{cases} 2 & 2 & 1 \\ 2 & 2 & 2 \end{cases} \qquad 3/21 \qquad -\frac{10}{7} \begin{cases} 2 & 2 & 1 \\ 2 & 2 & 4 \end{cases} \qquad -4/21 \qquad 0.02F^2$$ Energy $0.46F^{2}$ 1/441 $$\frac{10}{7} \begin{cases} 2 & 2 & 2 \\ 2 & 2 & 2 \end{cases} -3/49 \qquad \frac{10}{7} \begin{cases} 2 & 2 & 2 \\ 2 & 2 & 4 \end{cases} \qquad 4/49 \qquad -0.01F^2$$ $\frac{10}{7}\begin{bmatrix} 2 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$ 4/49 $\frac{10}{7}\begin{bmatrix} 2 & 2 & 4 \\ 2 & 2 & 4 \end{bmatrix}$ $$\frac{10}{7} \begin{cases} 2 & 2 & 2 \\ 2 & 2 & 2 \end{cases} -3/49 \qquad \frac{10}{7} \begin{cases} 2 & 2 & 2 \\ 2 & 2 & 4 \end{cases} -4/49 \qquad -0.0$$ $$-\frac{10}{7} \begin{cases} 2 & 2 & 3 \\ 2 & 2 & 2 \end{cases} -8/49 \qquad -\frac{10}{7} \begin{cases} 2 & 2 & 3 \\ 2 & 2 & 4 \end{cases} -1/49 \qquad -0.1$$ | | J , |) | | |----------------|------------|-----------------------------|--| | ¹ S | 4.6
eV | $^{1}A_{1}$ | | | 3 P | 0.2
eV | ³ T ₁ | | Symmetries O_k Total symmetry $^{1}E + ^{1}T_{2}$ $^{3}A_{2} + ^{3}T_{1} + ^{3}T_{2}$ ${}^{1}A_{1} + {}^{1}T_{1} + {}^{1}T_{2} + {}^{1}E$ Energy -0.1 eV -1.8 eV 0.8 eV ^{1}D 3**F** ¹**G** #### Ground state with charge transfer ## Ground state with charge transfer **High-spin or low-spin** #### **Ground-State Projections** The following shows the strong-field (left) and the weak-field (right) projections (given as an atomic LS and O_h expansions) of the lowest energy multiplet for an octahedral Co^{2+} system with 10Dq = 2.3 eV and no reduction on the Slater Integrals. - + charge transfer - + translation symmetry 16 17