BPM buttons

non linear beam response meets machine learning

Nicola Selbach

2024/12/11&12

Table of Contents

- Problem of non linear BPM response
- Boundary Element Solver
- Machine Learning approach
- Experimental Application
- Outlook

2/22

Introduction

Figure: standard BPM implemented in BESSY II

Figure: voltages over time, single bunch signal

3 / 22

Motivation

Figure: non-linearity in geometry of BESSY II

Figure: sensitivity and beam displacement

4/22

- Problem of non linear BPM response
- Boundary Element Solver
- Machine Learning approach
- Experimental Application
- Outlook

5 / 22

Simulation

Principle

- parametrize **geometry** of BPMs & buttons
- simulate beam positions in geometry through raster
- calculate **induced charge** for beam positions on chamber wall of geometry \implies boundary element method (BEM) [1]
- calculate beam position backwards from induced charges on ABCD

Figure: Reference [1]

Code Conversion

Original Matlab code $[2] \Longrightarrow Python code$ What's included?

- calculation of induced charge ⇒BEM method
- beam position raster & non linear solution
- Differences over Sum (DoS) method
 ⇒applied method to calculate XY-beam-position from ABCD-signals
- calculation of non linear k-factor
 scale factor is change of beam position divided by change of x or y around centres, needs to be applied to DoS solution
- Newton Raphson Algorithm
 iteration method to find XY-position from ABCD signals !time consuming!

Code Conversion: Matlab to Python

Most important changes

- conversion to SI units
 - $\mathop{\Longrightarrow} mm \longrightarrow m$
- 18 geometries included
 ⇒e.g. round, rectangular, two buttoned
- axis transformation
 ⇒according to BESSY II convention

Small Bug

- ullet BEM method \longrightarrow calculation of induced charge \Longrightarrow matrix of Green's functions solving the 2D electrostatic Laplace equation:
 - $G_{ii} = \int_{\Gamma_i} \ln(\frac{1}{|r_i r_i|}) dr_i = s \cdot (1 \ln(\frac{s}{2})); s = segments \ width$

- 1 Problem of non linear BPM response
- 2 Boundary Element Solver
- Machine Learning approach
- 4 Experimental Application
- Outlook

9 / 22

Idea

- train neural network how to solve XY-beam-position to ABCD-button-signal ⇒ well known & easy calculation
- generate training data with simulation code
- goal: neuronal network learns inverse problem
 - ⇒ the inversion we use is a good approximation for small beam displacements
 - ⇒ we want a **fast** solution for small & large amplitudes

Some Numbers

Example model:

- ullet time of training : $57265.4s \approx 7h$ on CPU
- training data size : 5.2GB
- model size : 4.6MB (not minimized)
- model architecture: 4 layers: [1000, 700, 500, 300]
- \bullet CPU * times for ML prediction : \approx 80ms $\,$ for measured dataset **
 - \implies CPU * times for Newton Raphson : \approx 7s for measured dataset **
 - * 13th Gen Intel(R) Core(TM) i7-1365U, 12 threads, 5.2 GHz
 - ** ≈ 7800 ABCD signals

Outcomes

Figure: behaviour of training and testing data during model development

Figure: performance

trained

tested

Outcomes

Figure: 2D model performance

Figure: 2D performance (dicrete area)

- Problem of non linear BPM response
- 2 Boundary Element Solver
- Machine Learning approach
- Experimental Application
- Outlook

14 / 22

Measurement

measured data of huge beam position shifts by changing masterclock frequency $\alpha \approx 7 \cdot 10^{-4}$, dispersion ≈ 0.5 m

Figure: signals on BPM buttons

Figure: XY positions

Evaluate model

evaluation in BESSY II model [3] in comparison to measurement results:

Figure: X positions comparison

Comparison to Newton Raphson

application of measurement data on Newton Raphson algorithm:

Figure: X positions comparison

Comparison to ML model

application of measurement data on ML model:

Figure: X positions comparison

18 / 22

- Problem of non linear BPM response
- 2 Boundary Element Solver
- Machine Learning approach
- Experimental Application
- Outlook

19 / 22

Raster A

- convert python code into python package
 ⇒ loadable & easy to apply
- implementation of different BPM button geometries
- apply beam current to ML model
 atm needs to be fixed by norm factor on ABCD
- apply ML model to FPGA system

Figure: HZB, BESSY II [4]

References

- [1] Shintake et al., " Sensitivity calculation of beam position monitor using boundary element method ", 1987, journal NIM-A, volume 254, pp. 146-150
- [2] A. Olmos, F. Perez, and G. Rehm, "Matlab Code for BPM Button Geometry Computation", in Proc. DIPAC'07, Venice, Italy, May 2007, paper TUPC19, pp. 186-188
- [3] Pyat documentation: https://atcollab.github.io/at/p/index.html
- $[4] \ \, \mathsf{Dirk} \ \, \mathsf{Laubner} \ \, \mathit{https} : //\mathit{www.helmholtz} \mathit{berlin.de/forschung/quellen/bessy/index_de.html} \\$

Thanks to:

PhD. Meghan Mc Atheer, Dr. Günther Rehm, Dr. Markus Ries, Dr. Gregor Hartmann, Dr. Andreas Schälicke

22 / 22