STRUCTURAL APPROACHES TO IDENTIFY NOVEL IMP DEHYDROGENASE INHIBITORS

Rubén Martínez-Buey
METABOLIC ENGINEERING GROUP

1st COMMITTED STEP IN GTP SYNTHESIS

IMPDH CONTROLS GTP BIOSYNTHESIS

IMPDH IS A DRUG TARGET

IMPDH MONOMERIC STRUCTURE

IMPDH FORMS TETRAMERS IN SOLUTION

HOW IS IMPDH REGULATED?

ATP & GTP ARE ALLOSTERIC MODULATORS

ATP & GTP INDUCE OCTAMERS

CONFORMATIONAL SWITCH

PDB-ID **4Z87**; Buey et al. *Nat Commun* 6, 8923. **2015** PDB-ID **5MCP**; Buey et al. *Sci Reports* 7, 2648. **2017**

CONFORMATIONAL SWITCH BY SAXS

THE CONFORMATIONAL SWITCH CONTROLS ENZYME ACTIVITY

HOW IS IMPDH REGULATED?

IMPDH IS A DRUG TARGET

ALL KNOWN IMPDH INHIBITORS ARE ORTHOSTERIC

Mycophenolic Acid (MPA)

$$\begin{array}{c|c} & CH_3 & OH \\ \hline \\ O & CH_3 & CH_3 \\ \hline \end{array}$$

Mycophenolate Mofetil (MMF)

Tiazofurin

Ribavirin

VX-944

$$\begin{array}{c|c} & & & \\ & & & \\$$

FF-10501

CAN WE OBTAIN ALLOSTERIC IMPDH INHIBITORS?

BENEFITS OF ALLOSTERIC INHIBITORS

BENEFITS OF ALLOSTERIC INHIBITORS

WHAT ARE WE SEARCHING FOR?

IMPDH CONFORMATIONS BY SAXS

CONFORMATION SHIFTS AT SUB-INHIBITORY CONCENTRATIONS

CONFORMATION SHIFTS AT SUB-INHIBITORY CONCENTRATIONS

SAXS IS MORE SENSITIVE THAN FUNCTIONAL ASSAYS

SAXS SCREENING

ACTIVITY INHIBITION SCREENING

CONFORMATIONAL CHANGE

ACTIVITY INHIBITION

[INHIBITOR]

SAXS AS A PRIMARY SCREENING METHOD?

IDENTIFYING ALLOSTERIC INHIBITORS BY HT-SAXS

SCATTERING PROFILES

EXTENDED vs COMPACT OCTAMERS

FUNCTIONAL vs STRUCTURAL ASSAY

FUNCTIONAL vs STRUCTURAL ASSAY

	ACTIVITY INHIBITION	SAXS
Sensitivity	10 hits (≥ 50% inhibition)	15 hits (≥ 50% inhibition)
[Protein]	🕧 ~ 100 μg	
Time	1 ∼ 30 min	

BIO-SAXS BEAMLINE OPTIMIZATION

SCREENING LARGE CHEMICAL LIBRARIES USING SAXS?

REDUCING SAXS EXPERIMENTAL TIME

Fragment libraries

MAXIMIZE CHEMICAL SPACE REDUCE SAMPLE COUNT

Compound pooling

EU-OPENSCREEN FRAGMENT LIBRARY

~ 42 HOURS @ B21 diamond

INHIBITED CONFORMATION ≥ 50%

50% ≥ INHIBITED CONFORMATION ≥ 40%

2 MAJORITARY FRAGMENT CHEMOTYPES

$$H_2N$$
 H_2N H_2N

ENHANCED SUB-STRUCTURE SEARCH IN THE EU-OPENSCREEN LIBRARY

EFFECT ON CATALYTIC ACTIVITY

in progress...

COLLABORATORS

