

ALBA II, new technologies and new beamlines

Francis Perez / Josep Nicolas

Dec 1st, 2023 Industry opportunities in light source infrastructures

ALBA II upgrade Project

The upgrade ALBA II includes:

- renovation of the storage ring
- renovation of the existing beamlines.
- **expansion** of the infrastructure.
- construction of up to three new long beamlines.
- synergy to create a scientific and technological pole in the area.

ALBA II Accelerator Upgrade

Upgrade the 3rd Generation ALBA Storage Ring to a 4th Generation Ultra Low Emmittance Ring: ALBA II

with the aim of doing it as efficiently as posible, in terms of cost and time.

Optimization parameters

- Keep beam energy 3 GeV.
- Keep the tunnel → SR with similar compact circumference.
- Keep existing ID beamlines → preserve 16 cells and source points.
- Bending beamlines can be relocated.
- Keep injector (present $\varepsilon_x^{\text{booster}} = 10 \text{ nm} \cdot \text{rad}$).
- Keep infrastructures, as much as possible.
- Straight sections ~4 m, with $\beta_x \sim \beta_v \sim$ 2 m.
- Reduce emittance by more than a factor 10 (<400pmrad).
- Full coupling operation option.

The upgrade

ALBA

~200 pm·rad

16

16

4.0 m

ALBA-II 6BA

Prototype program

ALBA II Enabling Technologies Project ALBA 01 (2022 - 2025)

ALBA 01 - 7,5 M€

Ayuda ICTS-MRR-2021-02-CELLS financiada por:

Design, and prototype construction of:

WP1 Magnets

WP2 NEG Coated vacuum chambers

WP3 Pulsed magnets

WP4 Girder for arc assembly tests

WP6 Superconducting Undulator

Magnet type	Prototype required?	Lots
QD	YES (1)	Lot 1
QDS	YES (2)	Lot 1
QF/QFS	YES (1)	Lot 2
Q1	NO (0)	
Q2	NO (0)	
Q3	YES (1)	Lot 2
SH	YES (1)	Lot 3
SV	YES (1)	Lot 3
CORR	YES (1)	Lot 4
Total	8 prototypes	4 lots

Designs done, CfT ready.

We order a conventional QDS (similar to QD), and a version with embedded coils.

→ The 2 reverse bends share the same geometry, so we order 1 single prototype.

→ We only order the triplet magnet with the highest working point.

WP2 Vacuum Chambers

Designs on going:

Pre-prototypes being ordered:

	MO flange prototy;	30	
	Birnetallic	Bulk part	Drawing
Nipple: MO-CF16 (1)	Chamber: Cu ETP Flanges: SS	CuCrZr	L0001 (bimetallic) L0002 (CuCrZr)
Length (between flanges)	70mm		
Blank MO flange (2)	SS	CuCrZr	L0006
Quantities:	2 sets ea	ch	
Gaskets (3)	Cu		L0005
Quantity:	20		

	SV chamber prototy	/pe	
	Vacuum brazing	Bulk part	Drawing:
Nipple: both sides CF63 (4)	Cu chamber SS flanges	CuCrZr	L0003 (bimetallic) L0004 (CuCr2r)
Length (between flanges) NEG coating:	175mm	1	
e-beam ph-beam	0.5 to 1.2 0.2 to 1.5		
Quantities:	2 sets ea	ich	

WP3 Pulsed Magnet

Ne

Double Dipole Kicker

Design done, prototype under construction

Magnet

NOTION BY THE PARTY OF THE PART

and

Pulsed Power Supply

WP4 Girders

Design ready – PDR with external panel on Oct'23

Working details on the movement system

1st eigenfrequency 77Hz – Max. deformation 30um

WP6 SCU

Order on the basis of functional specifications Detailed design is required in the tender

Table 6.2 outlines the main magnetic parameters of the SCU as required by CELLS.

Table 6.2: Magnetic parameters of the SCU.

*	
Total SCU Length (flange to flange)	2.5 m
Expected Magnet Length	≲ 2.0 m
Target Period	≲ 16.0mm
Maximum K	≲ 1.7mm
Minimum vertical vacuum <u>stay</u> clear gap	5.5 mm
Minimum horizontal vacuum stay clear gap	60 mm
General Energy Range	8 – 40 keV
Transverse field roll-off at ±10 mm @ maximum K	< 0.1 %
Field stability ABy / By over 72 hours at maximum K	< 10-4
The Hysteresis effects and repeatability shall be:	
within 58% to 100% of maximum K	< 0.1 %
within 20% to 58% of maximum K	< 1.0 %
Maximum phase angle error on x=0, z=0	< 5 degrees RMS

The **prototype tests** were co-funded by ALBA, HZB and DESY through the collaboration agreement RCN-CIN202100124 (2020-2023).

Cavity

SSPA

DLLRF

Bunch lengthening beam tests at BESSY II with the 3rd Harmonic EU Active Cavity Prototype

Single bunch profile for different harmonic voltages

Successfully tested with beam

Call for tenders

Several CfT are under way:

- Digital LLRF upgrade

- Doble Dipole Kicker prototype

- 3rd Harmonic RF Cavity

- Super-Conductor Undulator (SCU)

- Electro-magnets prototypes

Production

Production

Tendering

Ready to tender

Ready to tender

Foresee for 1st half 2024:

- 3rd Harmonic 1.5GHz SSPA

- Girders prototypes

- Vacuum chambers prototypes

- Permanent magnets prototypes (QDS & SB)

Technical specs under revision

Design ready, tech specs by Q1/24

Design ongoing, tech specs by Q2/24

Design started, tech specs by Q2/24

Future needs

Accelerator's components 2026-2029

New magnets

- ~ 600 magnets
- ~ 1000 power supplies
- Some, permanent magnets?
- New vacuum chambers
 - ~ 270 m vacuum chambers
 - SS, Cu, NEG coated
- New Girders
 - High vibration modes
 - High precision remote movement
- Many others:
 - Upgrade RF system with SSA and 3rd Harmonic Cavity
 - New Diagnostics equipment
 - New Insertion Devices
 - Upgrade electronics
 - ...

Beamlines for a new source

The beamline program aims at translating the features of the new source into an improved tool for the scientific research in many fields relevant for society.

Reasons

- Adapt to higher brilliance
- New opportunities
- Aging of instrumentation
- Compatibility with new machine

Scope:

- Detectors, Optics, endstation and endstation instrumentation, infrastructure.

Beamline upgrades

Spot on sample at the Xaira beamline

The definition and prioritization of the upgrade of the existing beamlines will be available early in 2024

Beamline program for ALBA-II

Brightness / coherence

- More flux on diffraction beamlines.
- Wave optics for x-rays.
- Approach ultimate resolution limit.
- Diffraction and imaging

Long beamlines

- Better spatial resolution at large working distance.
- Coherence at high photon energy.
- Nanoprobes and imaging

Superbends

- Enable the use of BM beamlines for higher photon energies.
- Spectroscopy and diffraction

ALBA-II upgrade

ALBA main building

- Accelerators
- Experimental hall
- Laboratories

ALBA-II extension

- Experimental halls for BLs 2,3 and 4
- Laboratories
- Collaboration institutes

ALBA-II Beamline program

- A) Construction of 4 new beamlines
- B) Upgrade of the 13 existing beamlines of ALBA

Main building

BL02-CoDI

Hard X-ray nanoprobe beamline devoted to **Coherent Diffraction** Imaging techniques, for in-operando studies in material science.

	CoDI	
Source	In vacuum undulator (IVU19)	
Energy Range	10 - 30 keV (DCM + MLM)	
Spot Size	30-50 nm	
Technique	nanoDiffraction, nanoFluorescence, CDI, Ptychography, Holography, Bragg- ptychography, Tele-ptychography	
Features	20 m flight tube Laser Heating, High Pressure, Gas dosing, Cryostream, Cryostat (space around sample for versatile sample environment)	
Sample	Micro reactors / Electro chemistry cells for in-situ and operando	
Detector	One large area detector (6M type) One small detector mounted on robot arm Multielement SDD	

3D reconstruction and Evolution of strain in a Pt nanoparticle as varying electrode potential. Useful for the design of strain-engineered nano-catalysts

BL04-Corus

Hard X-ray nanoprobe beamline devoted to spectral Imaging and tomography for life sciences.

	Corus	
Source	In vacuum undulator (IVU19)	
Energy Range	10 - 27 keV (DCM + MLM)	
Spot Size	20-50 nm	
Technique	3D-nanoXRF, XANES (STXM) Holo-tomography (Full Field)	
Features	LN2 cryogenics, 180º Rotation, XY mapping UHV, Visible microscope	
Sample	Multi-sample shuttle system	
Detector	Nanospec:: Two Multielement SDD, Diode NanoImag: Two Multielement SDD, sCMOS Area detector.	

Determination of intra-cellular location of Ir in breast cancer cells. Imaging at nm-resolution with chemical sensitivity.

BL02-CoDI: Optical layout

ALBAN

BL04-CORUS: Optical layout

A challenge: Nanofocusing KB optics

The intended nanoprobes represent a challenge, first in optics

- Plano-elliptic mirrors
- Graded multilayer coating
- $R_{min} \sim 10 \text{ m}$
- Length >80 mm
- Figure Errors < 1 nm, < 50 nrad
- Transversal acceptance < 1 mm²

- Spot size <25 nm fwhm
- Depth of focus < 10 μm
- Distance to sample <40 mm

Detector robot

Endstation (CoDI)

Endstations for CoDI (and Corus) include

- Sample positioning (hexapods, scanners)
- Detectors (Pixel detectors, Fluorescence, Izero)
- Sample environment (gases, cryogenics...)

Lightweight, speed and compactness are required.

Watchmaker mechanics.

Nanometer stability

- Vibration isolation
- Drift compensation
- Temperature, humidity stability

More challenges

Nanometer positioning accuracy

- Feedback positioning systems
- Nanometer resolution
- Nanometer guidance errors
- Fast actuators

Optomechanics

- In vacuum undulators
- Front End
- Mirrors systems (incl. cooling, and bending)
- Double crystal monochromators
- Multilayer monochromators
- Slit systems
- Diagnostic sets
- Wavefront sensors

Infrastructure

- Rad. Shielding hutches
- Cabling
- Media supply
- Vacuum system
- Gas handling
- Beam transport
- HVAC
- Building isolation
- BioSafety BSL2

Data

- High data volume
 - Networking
 - Storage
- Complexity
 - Real Time processing
 - Data Analysis

Endstation

Future needs

- Sample manipulator
 - Hexapodes
 - Goniometers
 - Scanning stages
- Detectors
 - Pixel detectors
 - Si drift detectors
 - Izero monitors
- Sample environment
 - Gas dosing
 - Cryogenics
 - Heating
 - Sample Exchange robots
 - ..

Summary

- One brand new 4th generation storage ring.
- Construction of 4 new beamlines
- Upgrade of the 13 existing beamlines of ALBA

Thanks!

