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j UERAAD 1. Problem #1
To decrease CO, footprint / emissions (direct & indirect)

Portland cement (PC) world production is ~4 Gt/yr, 4.4 Gt in 2020. 3441 PC integral plants in the world, 33 in Spain.
PC production is expected to range 4-8 Gt/yr by 2100, depending upon the world growth pattern(s).

On average, for every ton of type-I PC, ~0.95 CO, t are released, from (i) limestone decomposition, (ii) burning fuel,
and (iii) electricity consumption for grinding. This translates into ~7-8% of the total anthropogenic CO, emissions, 3.5 Gt/yr.

600 Millions house units are needed by 2040. 40 M/units per year. The average house unit size in Hong Kong is 33 m? and in the
USA/Australia is 230 m2. The average size of a slum room/unit is ~9 m?, and there are 1.2-1.5 billion people living in slums.
Finally, Africa is predicted to increase from 1.2 billions to 2 billions, in next 30 years. This means many houses (or immigration)...
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¢ el 1. Problem #2. To decrease Construction and Demolition Wastes (CDW)

The Empire State Building in 1932; &

e Today, the concrete use is ~20-25 Gtlyr.

e The estimated world concrete stock is 315 Gt which results in 0.3 Gt/yr of CDW.

e The newest model predicts a skyrocket increase of CDW to ~30 Gt/yr by 2100.

This could not be processed as aggregates, as it will be more than two times the predicted need.

— Cements with lower CO, footprint and more durable/sustainable.

Todays expected service live of buildings and infrastructures: <100 years!
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Cement hydration as seen by:
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Difficult and challenging (but rewarding) problems require a wide set of techniques to extract relevant information.
But we are always adding (not replacing!) characterization techniques. Is this sustainable?

BUT, there is already a tsunami of data at large facilities and at laboratory imaging equipments — ML approaches

ONE EXAMPLE FOR SYNCHROTRON DATA (but lab data is not very far):

Our recent work: Shirani, et al. “Influence of curing temperature on belite cement hydration: a comparative study with Portland cement”,
Cement and Concrete Research, 2021, 147, 106499. (About one year of data analysis).

Contained (in addition to several other characterization techniques):

# 34 X-ray synchrotron tomograms amounting 743.4 GB of reconstructed data &

# 18 Rietveld quantitative phase analyses of Laboratory Mo-Ka, powder diffraction data
Raw data could not be deposited at Zenodo as it only allows 100 GB per doi
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JMVERSDED 4D nanoimaging by near-field ptychotomography. FoV=180x30 um. Spatial resolution=3h.
Time resolution=3h per tomo. Excellent component contrast. Relevant conditions: just ok.

19h . 47h ” 93h
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E) (nmversin: Main features to explain the acceleration-deceleration transition

¢ Particle size-dependent spatial dissolution rate(s)
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(i) ~100 nm/h (indirect) spatial dissolution rate
for particles smallerthan 3 pm [4-19h, @]

(ii) ~33 nm/h (indirect) spatial dissolution rate
for particles larger than ~6 pm [4-19h, @]

(iii) 20-25 nm/h (direct) spatial dissolution rate
for particles larger than ~8 pm [19-47h, @]

(iv) ~41 nm/h (direct) etch-pit growth rate
for particles larger than ~8 pm [19-47h, @]

(v) ~0.47 e"A3 (direct) C-S-H gel shell ’ ‘ "
electron density for particles larger than ~10 um [at 19h, @], ~0.53 e A3 at47h Distance (um)
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Highlights of our recently published work: 4D nanoimaging of cement hydration (2023)

Shirani, et al. 2023. Nat. Comm. Doi: 10.1038/s41467-023-38380-1
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; Bttt Fast high-resolution relevant 4D nanoimaging

spatial resolution temporal resolution
~270 nm 180 min

O
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2 e
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200x30 pm | 200x 20-15 um \C) ~40 me-A3, if needed

relevant conditions more than data = scientific information 20 0f 26



Preparatory High-Resolution nf-PnCT experiment at cSAXS in 2023

HR-nf-PnCT standard-nf-PnCT
PC-HR-nf-PnCT voxel size: 55 nm voxel size: 186 nm
FoV: 180%15 um
Project.: 2400 0.8 08 -
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The challenge, fast HR-nf-PnCT: 2000 — 100 min

cSAXS BL-PSI

S5

A

180um (horizontal)
(R !

I unpublished
15um (vertical) 21 of 26



ERS, 5

g
&5

UNIVERSIDAD

> sewwcn  High Resolution nf-PnCT (of very large samples, for nCT) ¢ nanoCTs of voxel size: 55 nm,

spatial resolution: ~90 nm

— FZP of highest focusing performances
PC-HR-nf-PnCT —> Maximum sample-detector distance
5§ m

- 2400 projections  Crowther limits:
Experimental comparison details:

Energy (keV)
Detector: Eiger 1.5M, 75 um pixel size

Number of projections:

Sample-detector (mm):
FZP details

outer-most zone width (nm):
diameter (um):
focal distance (mm):

distance focus-sample (mm):
< 180um (horizontal) 5 beam size @ sample (um):
& average step size (um):
exposure time (s):

50 0 50 15um (vertical) unpublished

- Shortest focus-sample distances, within near field

5140 projections for 180um @ 55nm. Hence, 2400 was 47%
1520 projections for 180um @ 186nm. Hence, 420 was 28%

In situ HR-test

8.939 8.939
—Same —
420 2400
5240 7210
60 30
120 250
51.9 54.1
13.0 5.3
30.0 245
7.0 4.0
0.1 0.2
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2 cewiea  Fast High Resolution nf-PnCT The key challenge, fast nanoCTs: 2000 — 100 min

— To profit from the increase of coherent flux at 4t generation
synchrotron sources (f.i. SLS upgrade, EBS-ESRF, MAX-IV)

— To decrease the detector counting time from 0.2 to ~0.01 s
(Eiger 1.5M can read at 250 Hz in continuous mode, i.e. 4 ms)

— Scan speed from 5 to 15 Hz (or higher, under BL development)

— To collect ~1500 projections, (it may impact spatial resolution)

— The average step size could be increased to ~6-8 um, it will
impact the spatial resolution

The resulting data (taken to the limits) will be noisier. Programs:

— To adapt/use, when needed, TomoGAN
— To adapt/use, when needed, GANrec
— To adapt/use, when needed, Noise2lnverse

Optimization of:

> ¢ counting time; ¢ average ptychographic step size;
$ ¢ number of projections; ¢ size of the vertical FoV; ¢ scan speed

WY . : il ; " (vertical) UﬁpUb/iShed Backup 23 of 26
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“% DE MALAGA This document details the proposal for the Coherent Diffraction Imaging beamline (CoDI) at ALBA II.

The main scope and uniqueness of CoDI is to perform in situ and operando characterization of thick
samples with nanometer resolution exploiting:
(i) the coherence of ALBA II;
(ii) the possibility of building a 250 meters long beamline;
(iii) the availability of room for a unique sample detector distance of 20 m, as a new building will
be constructed.
To achieve these goals, CoDI is optimized for:
(i) A range of energies between 10-30 keV to probe thick samples in their relevant conditions,
(ii) An efficient control of the coherence and flux using a secondary source to tailor the beam
features of the experiments to be carried out,
(iii) The use of a nano-focusing Kirkpatrick—Baez (KB) mirror (sub-50 nm focus) that enable a
long working distance, more than 150 mm, that allows to accommodate in situ and operando
sample environments,

(iv) Multilayer Laue lenses (MLLs) to produce the ultimate efficient nano-focus (sub-10 nm focus)
for ultra-high resolution X-ray imaging,
(v) A long sample to detector distance that enables high-solid angle resolution with current direct-

conversion detectors.
These features will make CoDI not only one of the forefront beamlines for scanning nanoimaging
techniques (X-ray diffraction or X-ray fluorescence) but also for coherent imaging in the forward direction
(ptychography and holography) and in diffraction conditions (Bragg-CDI, Bragg-ptychography, and tele-

ptychography)
BUT, please do not forget this would be a nanoimaing BL, therefore pay attention to:
software, software, software, software, software, software, software, software,

software, software, software, software, software, software, software, software,... 25 of 26
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Take home message & acknowledgements

Multilength scale imaging is relatively easy by taking data at different beamlines.

Relevant multilength scale imaging (at least in cement hydration) is very challenging
(difficult) as the conditions for sample preparation and data acquisition must be such
that samples are not altered and they are kept in the appropriate environment.

Relevant multilength scale 4D imaging is even more challenging
but it can be done and it is being improved

We thank financial support from Spanish government and Andalucia regional government.
We thank: (i) SLS/PSI for beamtime at cSAXS and TOMCAT; (ii) ESRF for beamtime at ID19.
Laboratory pu-CT data are taken at SCAI-UMA

| thank all collaborators from UMA, SLS/PSI, ESRF, ALBA, .... This is a team effort!
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