

Critical Materials and Life Cycle Thinking

Low Emittance Ring – Permanent Magnets Workshop November 14th 2023 / Trieste, Italy

Andrea Klumpp/ DESY / i.FAST WP 11

İFAST

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

The challenge

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

The evolution of the planetary boundaries framework. Licenced under CC BY-NC-ND 3.0. You are free to share — copy and redistribute the material in any medium or format. (Credit: Azote for Stockholm Resilience Centre, Stockholm University. Based on Richardson et al. 2023, Steffen et al. 2015, and Rockström et al. 2009)

Public Perception

Sünden für die Forschung

Expeditionen, Teleskope und Großgeräte belasten das Klima. Langsam kommt es zum Umdenken

Reisen oder nicht? Diese Frage stellen sich viele Forscherinnen und Forscher. Denn: Die pandemiebedingten Beschränkungen sind weitgehend abgeschafft, sie könnten wieder durchstarten zu Expeditionen. Speziallaboren und Konferenzen Doch die Reisen belasten das Klima und vergrößern weiter den CO3-Fußabdruck über dem Durchschnitt liegt.

Das liegt unter anderem an großen For schungsbauten aus Beton und Stahl, die zudem viel Strom verbrauchen. Die As-tronomie mit ihren Teleskopen und Rechenzentren gehört eindeutig zu den großen Emittenten. Doch auch die Teilchenphysik mit ihren Beschleunigern und die Umweltforschung -

Kosten des

The challenge

Permanent

Awareness

Life Cycle

Recycling

Certification

Next steps

Assessment

Magnets

Wie viel, das lässt Der "Klimaabdruck" einschließlich Herstellung, eines Gebäudes oder von Dienstreisen, kann

Stichwort Expediti onslogistik - tragen

eine gewisse Unsicherheit, können Tendenzen jedoch deutlich machen. Demnach sind in der Astronomie die

Infrastrukturen der dominierende Fak- Fahrt fürs Klima. Der Polarstern hat auf der "Mosaic"-Expedition rund 7000 Tonnen Schiffsdiesel verbraucht.

https://infrasevent.presidencyeu.es/#event

DER TAGESSPIEGEL

Brandbrief für Klimaschutz

02.09.2020. 17:34 Uhr

Dicke Luft bei Helmholtz

Mitarbeiter der Forschungsorganisation fordern weitreichende Maßnahmen für sofortigen Klimaschutz. VON JAN KIXMÜLLER

Die Standorte, wie hier am GFZ Potsdam, sollen klimaneutral werden. FOTO: SEBASTIAN GABSCH PNIN

SPIEGEL Wissenschaft

Studie zu Emissionen

Wie klimaschädlich darf **Grundlagenforschung sein?**

In China soll ein riesiges Neutrino-Obser ökologische Auswirkungen diskutiert. Da Astronomen und Astronominnen angeko

Von Christoph Seidler 16.01.2021, 19.12 Uhr

How climate-damaging is basic research allowed to be?

Andrea Klumpp – Low Emittance Ring – Permanent Magnets Workshop November 13th 2023 / Trieste, Italy

The challenge - energy consumption DESY 2021

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Energy Consumption in other accelerator facilities

Increasing use of permanent magnets in new lattices

Permanent magnets run without electricity

BESSY III

ESRF: before upgrade 16.9 GWh / year

after upgrade 8.5 GWh / year Permanent accelerator magnets for light sources

5th ESSRI Workshop 2019,

https://indico.psi.ch/event/6754/contributions/18013/

PSI: SLS 6.4 GWh / year M.Seidel

SLS2.0 2.6 GWh / year Technologies for Sustainable Accelerators

First I.FAST annual meeting 2022

https://indico.cern.ch/event/1138690/contributions/4782721/

HZB: BESSY II 5.1 GWh/ year J.Völker

<1.3 GWh/ year Overview permanent magnets at accelerator facilities

J.Chavanne

I.FAST REE workshop 2023

https://indico.desy.de/event/35655/timetable/#20230206.detailed

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Bending magnets at PETRA IV

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

- H6BA lattice: DLQs combine the function of a dipole and quadrupole magnets to save space
- Soft iron poles and yoke; SmCo magnets
- Thermal shims for temperature compensation
- Energy savings: nearly 2.87 GWh/year

(calculated with 6500 h operation time per year; without cooling and heating)

for all electromagnets in PETRA IV nearly 6.4 GWh per annum (6500 h operation time)

CO₂ footprint for bending magnets

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

- First calculations for material and energy:
 NO! production, transport and cooling in operation included
- Literature research for Global warming potential (GWP) for materials
- Depending from included processes (eg. mining, sintering ...) and mining/production region but also from data base, program for calculation values for one material differ a lot
- Here only cradle to gate calculations (for SmCo only the raw material Sm and Co)

*Group of Lanthanide	La 11.0	Ce 12.9	Pr 19.2	Nd 17.6	Pm	Sm 59.1	Eu 395	Gd 46.6	Tb 297	Dy 59.6	Ho 226	Er 48.7	Tm 649	Yb 125	Lu 896
**Group of Actinide	Ac	Th 74.9	Pa	U 90.7	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Life Cycle Assessment of Metals: A Scientific Synthesis Philip Nuss1*, Matthew J. Eckelman www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e101298

CO2 footprint for bending magnets

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

- First calculations for material and energy:
 NO! production, transport and cooling in operation included
- Literature research for Global warming potential (GWP) for materials
- Depending from included processes (eg. mining, sintering ...) and mining/production region but also from data base, program for calculation values for one material differ a lot
- Here only cradle to gate calculations (for SmCo only the raw material Sm and Co)

First calculations - CO2 footprint for bending magnets

	DLQ1			DLQ2	DLQ3	
	Emag	Pmag	Emag	Pmag	Emag	Pmag
operation [kW]	1,27		0,67		1,11	
Fe [kg]	189,6	114,33	170,6	114,33	287,6	171,40
Cu [kg]	34		31		50	
Al [kg]		20		20		30
Sm ₂ Co ₁₇ [kg]		16,47		16,47		24,70
FeNi [kg]		1,2		1,2		1,8
Total weight [kg]	223,6	152,0	201,6	152,0	337,6	227,9

Material and energy consumption for DLQs

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

First calculations - CO2 footprint for bending magnets

	DLQ1			DLQ2	DLQ3	
	Emag	Pmag	Emag	Pmag	Emag	Pmag
operation [kW]	1,27		0,67		1,11	
Fe [kg]	189,6	114,33	170,6	114,33	287,6	171,40
Cu [kg]	34		31		50	
Al [kg]		20		20		30
Sm ₂ Co ₁₇ [kg]		16,47		16,47		24,70
FeNi [kg]		1,2		1,2		1,8
Total weight [kg]	223,6	152,0	201,6	152,0	337,6	227,9

Material and energy consumption for DLQs

Permanent Magnets

The challenge

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

GWP for (a) material (electromagnets- blue and permanent magnets – orange)

First calculations - CO2 footprint for bending magnets

	DLQ1			DLQ2	DLQ3	
	Emag	Pmag	Emag	Pmag	Emag	Pmag
operation [kW]	1,27		0,67		1,11	
Fe [kg]	189,6	114,33	170,6	114,33	287,6	171,40
Cu [kg]	34		31		50	
Al [kg]		20		20		30
Sm ₂ Co ₁₇ [kg]		16,47		16,47		24,70
FeNi [kg]		1,2		1,2		1,8
Total weight [kg]	223,6	152,0	201,6	152,0	337,6	227,9

Material and energy consumption for DLQs

The challenge

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

GWP for (a) material (electromagnets- blue and permanent magnets – orange) and (b) including estimated energy consumption (material + renewable electricity for 2 years – green)

Problems and challenges of permanent magnets

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

Beginning of life cycle: Mining and Processing

- Rare earths are mined and processed under destructive social and environmental conditions
- No alternative sources or certified mining and processing available

In operation

- Temperature fluctuations and radiation damages reduce the life span
- Magnetic field is not adjustable, so changes in trajectories can not be compensated
- Magnetic field can not be switched off (Safety aspects like maintenance)

End of life cycle: Recycling

So far no industrial recycling chain

- a) Private, illegal minning in China; http://www.chinahush.com/2009/10/21/amazing-pictures-pollution-in-china/; 2009 2011 ChinaHush is licensed under a Creative Commons License Copyright: Lu Guang;
- b) air pollution by heavy industries; Quelle: china-digital-times Copyright: My Essentia com blog;
- c) In-Situ-Leaching; Quelle: Web-Page Bellona Copyright: Andrej Ozharovsky;
- d) Entrance to waste disposal for radioactive waste from REE production in Bukit Merah in Kledang mountains; built for 20 years storage of radioactive waste (14 Mrd years radioactive half-life); 1985 Copyright: Consumer Assciation Penang

Beitrag: Collector

Lizenz: Creative Commons (CC-BY-NC-SA) V.3.0

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

What to do?

What to do?

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

- Awareness at accelerator community
- Implement life cycle management already in planning phase of new Ris
- Find best practice for recycling of these materials
- Support development of certification system for mining and processing of critical materials

I from M.Erdmann: https://indico.desy.de/event/35655/contributions/137541/

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

Awareness

Awareness

Workshop: Critical Materials and Life Cycle Management: The Example of Rare Earths – curse or blessing?

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

- Life Cycle Assessment (LCA) and Recycling for permanent magnets
- Certification and auditing for rare earth elements

All Presentations can be found at: https://indico.desy.de/event/35655/overview

REPM 2023 in Birmingham REPM 2023 (eventsair.com)

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

Life Cycle Assessment

Life cycle

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

European Commission, Joint Research Centre, Cristobal-Garcia, J., Pant, R., Reale, F., et al., *Life cycle assessment for the impact assessment of policies*, Publications Office, 2017, https://data.europa.eu/doi/10.2788/318544

Life Cycle Assessment (LCA)

A tool for the analysis of the environmental burden of products at all stages in their life cycle

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Inc	licator		Unit
•	Climate Change Potential (Global Warming)	GWP	kg CO ₂ eq.
•	Eutrophication Potential (Over-fertilization)	EP	kg P eq./kg N eq.
•	Photochemical Ozone Depletion Potential (Summers	smog) POCP	kg Ethene eq.
•	Ozone Depletion Potential (Ozone hole)	ODP	kg CFC-11 eq.
•	Acidification Potential land and ocean (Acid rain)	AP	$kg SO_2 eq.$
•	Human toxicity	HTP	kg 1,4-DCB eq.
•	Ecotoxicity	FAETP / MAETP / TETP	kg 1,4-DCB eq.
•	Abiotic Resource Depletion (Resource scarcity)	ADP	kg Cu eq.
•	Water scarcity		m³ world eq.
•	Land use		m²a

Process chain for REE

PROCESS CHAIN OF RARE EARTH PRODUCTION

The challenge

Permanent Magnets

Awareness

Life Cycle **Assessment**

Recycling

Certification

Next steps

Exploration

Concentrating

REO reduction to RE Metals

Manufacturing of Magnets

Application

Monazit

China: Bayan Obo

Flotation

REO Electrolysis

RE Magnets

Wind Generator

Australia: Mount Weld

Comparing different supply chains

ore location technique

Eudialyte

China: Ion-adsorption Clays

Processing Plant

REO Powder

| from P.Zapp https://indico.desy.de/event/ 35655/contributions/137451/

LCA for permanent magnets

SUMMARY OF LIFE CYCLE ASSESSMENT (LCA)

Challenges

The challenge

Permanent

Magnets

Awareness

Life Cycle

Recycling

Certification

Next steps

Assessment

- High energy demand
- High water consumption → Sinking of the groundwater level
- High chemical consumption (organic solvents, acids, flocculants, ammonia and nitrate compounds)
- High amount of emissions, effluents, and solid waste
- Discharge of radioactive elements (232Th, 238U) and their decay products into the environment
- Salinization and toxic and radioactive contamination of groundwater in mining/processing regions
- Land occupation for mining, processing plant(s), additional infrastructural facilities, waste disposals, tailings, dams, permanent storage of radioactive waste materials
- Transportation distances and routes (for separately located processing facilities)

07.02.2023

Accidents: uncontrolled leakage of contaminated wastewater (pipeline leaks, dam bursts) – not considered in LCA

Page 28

from P.Zapp https://indico.desy.de/event/35

655/contributions/137451/

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

Magnet recycling

Future material demand

Green energy and transport increases material demand

Permanent Magnets

The challenge

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

*Source: REIA (2022)

**Source: IEA (2021), Global EV Outlook 2021, IEA, Paris https://www.iea.org/reports/global-ev-outloak-2021

I from C.Burkhardt: https://indico.desy.de/event/35655/contri butions/137453/

The recycling chains

Permanent Magnets

The challenge

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

6

| from D. Vogt https://indico.desy.de/event/35655/co ntributions/137462/

The short loop

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

Rare Earth Recycling

Short loop

Recycling is technically feasible

- High yield
- High quality
- Low carbon footprint

Source: Speight, J.; Climate Change from a Materials Perspective, The University of Birmingham, 02.08.2019

kshop - Critical Materials and LCA: Rare Earths, @ Prof. Dr. Carlo Burkhardt

I from C.Burkhardt: https://indico.desy.de/event/35655/contributions/137453/

The long loop

The DysCovery process

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

Pre-Processing

H2-free leaching

Precipitation

Extraction chromatography

Nd Electrowinning

Magnet production / testing

1) Demagnetizing

- Above Curie temperature
- Inert atmosphere

Innovative dissolution process

Avoid hydrogen evolution

low operation risk closed loop process

Pre-Processing

H2-free leaching

Precipitation

Extraction chromatography

Nd Electrowinning

Magnet production / testing

Innovative extraction chromatography

Seperation of REE and Co

Pre-Processing H2-free leaching Precipitation Extraction chromatography **Nd Electrowinning**

Magnet production / testing

UDysC very

Production of new magnets from EOL waste

RE refining + magnet production/testing

Andrea Klumpp – Low Emittance Ring – Permanent Magnets Workshop November 14th 2023 / Trieste, Italy

from D. Vogt https://indico.desy.de/event/35655/co ntributions/137462/

Balancing in recycling

Rare-earth permanent magnet recycling

Options for the use of recycled magnets in dependence of the technology

Performance | Sustainability | Cost

 For the use of recycled RE permanent magnets a materials tradeoff needs to be used

Elemental recycling

- With elemental recycling the highest magnetic performance can be adjusted → equivalent to magnets from primary elements
- Cost for the recycling process is high
- Sustainability is low → better than magnets from primary elements

Functional recycling

- Magnetic performance is dependent on the EoL magnets
- Sustainability is potentially highest
- Pretreatment of EoL magnets is needed

© Fraunhofer IWKS

The challenge

Permanent

Awareness

Life Cycle

Assessment

Recycling

Certification

Next steps

Magnets

I from J.Gassmann: https://indico.desy.de/event/35655/cont ributions/137452/

Balancing in recycling

Rare-earth permanent magnet recycling

Options for the use of recycled magnets in dependence

Performance | Sustainability | Cost

 For the use of recycled RE permanent magnets a materials tradeoff needs to be used

Elemental recycling

- With elemental recycling the highest magnetic performance can be adjusted → equivalent to magnets from primary elements
- Cost for the recycling process is high
- Sustainability is low → better than magnets from primary elements

Functional recycling

- Magnetic performance is dependent on the EoL magnets
- Sustainability is potentially highest
- Pretreatment of EoL magnets is needed

© Fraunhofer IWKS

The challenge

Permanent Magnets

Awareness

Life Cycle

Assessment

Recycling

Certification

Next steps

I from J.Gassmann: https://indico.desy.de/event/35655/cont ributions/137452/

Challenges in recycling process

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

RE Magnets Recycling

Technical issues

Other technology metals (Ag, Pt, Pd) have recycling rates of ~30%

- Recycling rate of Nd is <1%
 - → Large diversity of End-of-Life Magnets:
 - SmCo, Ferrite, NdFeB....
 - no design for recycling
 - → Underdeveloped recycling schemes

Workshop - Critical Materials and LCA: Rare Earths, ⊗ Prof. Dr. Carlo Burkhardt

18 / 46

Challenges in recycling in accelerator facilities:

Designed for recycling?

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

Example old DORIS undulators: At the workshop - initiation of recycling of some DESY undulators

Problem 1: how to disassemble the magnet structures/ undulators?

T.Vielitz, DORIS undulator

HPMS is a hydrogen based process which is used to extract NdFeB magnets from electrical products such as hard disk drives. The extracted NdFeB powder is in the form of an alloy which can be re-processed into different forms which can be sold back into the supply chain for rare earth magnets. Source: Speight, J.; Climate Change from a Materials Perspective, The University of Birmingham, 02.08.2019

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

Certification and audit

Certification

Voluntary Sustainability Standard Systems for Mineral Resources

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

International Council on Mining & Metals

The Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association of Canada

Mining Association o

WORLD

GEOZENTRUM HANNOVER

18

I from M.Erdmann: https://indico.desy.de/eve nt/35655/contributions/13 7541/

Certification

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

Summary: Process for Certification

Initial Process

- Sign NDA & Declaration of Participation
- 2. CSR introduction, basic training & Baseline Audit by Nanjing University EHS
- 3. Certification: Bronze Basic supplier qualification
- 4. Training & Improvement
- Audit
- 6. Certification: Bronze / Silver / Gold / Platinum CSR Improvement Fund participation

Ongoing 3-year cycle

- Continuous Improvement & CSR improvement projects (with CSR fund support)
- Third-party assessment / pre-audit and audit preparation
- Certification Audit
- Certification: Bronze / Silver / Gold / Platinum CSR Improvement Fund participation

Lutz Berners | 07 February 2023 | DESY Workshop on Magnets ers Consulting GmbH. All rights reserved

| from L. Berners https://indico.desy.de/event/35655/c ontributions/137504/

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

LCA

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

- Analyse existing LCA on rare earth
- Develop further down the supply chain
- Start LCA on other (easier) technical components with better data available -> electronics

I from A.Lotan: https://indico.desy.de/event/35655/contributions/137465/

Certification

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

Raise awareness

- Get better data/transparency
- develop and establish a first set of criteria to be specified in the procurement tenders → together
- start with transparency, auditability and initial questions on the biggest issues
- become more stringent over time
- Support political processes for CoC Certification

Approaches for Sustainable Raw Material Supply Chains

- > Governance in resource rich countries
- Technological development
- Commitment to international standards
- Business initiatives in the mining industry
- > etc.

- Regulations
- Supply chain initiatives
- > Pilot projects from OEMs
- etc.

I from M.Erdmann: https://indico.desy.de/event/35655/contributions/137541/

Recycling

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

- Include questions of RC already in design
- Help make REE
 recycling a successful
 business case
- Cooperation with institutes and industry developing REE RC

Source: Speight, J.; Climate Change from a Materials Perspective, The University of Birmingham, 02.08.2019

At DESY

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

- Discussions about permanent magnets for focussing electron beam (Quadrupole)
 - First design studies are done
- Development of a procurement scheme for sustainable magnets (in cooperation with other accelerator facilities)
 - Cooperations with consultant is planned
 - iFAST Workshop
- In the design phase, the recycling has to be in mind!

P. Ngotta

Sources

The challenge

Permanent Magnets

Awareness

Life Cycle Assessment

Recycling

Certification

Next steps

Infos taken from several presentations given at the iFAST Workshop

"Critical Materials and Life Cycle Management: The example of Rare Earths – curse or blessing"

06.-08.02.2023 at DESY;

indico: https://indico.desy.de/e/ree

