Challenges with the Permanent-magnet Delta Undulator for the Sirius Synchrotron Light Source

Low Emittance Ring – Permanent Magnets Workshop November 2023 – Trieste, Italy

Lucas Henrique Francisco

Magnetic Systems Group

Brazilian Center for Research in Energy and Materials

Sirius

4th generation 3 GeV synchrotron
518 m circumference S.R.

Operating at 100 mA in top-up mode
0.25 nm·rad emittance
Up to 38 beamlines

Phase 1: 14 beamlines

First opened to community in 2020 10 currently open to external users

Phase 2: 10 new beamlines

+ 3 beamlines for future BSL-4 laboratory

Low β beam-stay-clear

15 low-β straight sections allow for insertion devices with lower horizontal gap...

...used for the first time in a storage ringbased light source.

Linear, circular and elliptic polarization

Symmetry in the H and V deflection parameters

Higher peak field compared to planar and APPLE-II

Less complex design compared with APPLE-X

The field can be aligned with the beam axis but not eliminated

Design should allow hall probe <u>measurements</u>, <u>shimming</u>, and <u>installation</u> around vacuum chamber while keeping <u>block fastening</u> and <u>mechanical stability</u> in mind.

Delta Undulator for Sabiá Beamline

Soft x-rays beamline focused on x-ray absorption spectroscopy (XAS) and electron photoemission microscopy (PEEM).

Gap	13.6 mm
Number of periods	21
Period length	52.5 mm
Length	1.2 m
Energy range	0.1 – 1.6 keV
Magnets remanence (NdFeB)	1.37 T
Peak field on linear polarization	1.25 T (K = 6.1)
Peak field on circular polarization	$0.88 \text{ T } (K_H = K_V = 4.3)$
Max. Transversal force on single one array	29 kN
Max. Longitudinal force on single array	33 kN

Delta Undulator for Sabiá Beamline

Soft x-rays beamline focused on x-ray absorption spectroscopy (XAS) and electron photoemission microscopy (PEEM).

13.6 mm
21
52.5 mm
1.2 m
0.1 – 1.6 keV
1.37 T
1.25 T (K = 6.1)
$0.88 \text{ T (K}_{H} = \text{K}_{V} = 4.3)$
29 kN
33 kN

Phase

Cassettes movements

Delta Undulator for Sabiá Beamline

Magnet blocks and mechanical design

Keepers / Subcassettes

Magnetic measurement

Magnetic measurement

Space between longeron and cassettes

Magnetic measurement

Measurement outside central planes could not be made with Hall probe.

Magnetic assembly and optimization

Block selection and sorting

Block rotation

Terminations design

Terminations optimized only before assembly.

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Magnetic assembly and correction pathways

Block shimming

Shims from 0 to 0.5 mm in 0.05 mm steps

Initial 0.25 mm value (±0.25 mm shimming)

Keepers were disassembled and reassembled on the undulator for shimming, time-limiting the number of possible shimming iterations.

Assembly device, also used for shimming

Repeatability issues

Hall probe measurements after full assembly revealed great phase error deviations among measurements separated by cassettes cycling

Radia model simulations revealed compatibility with cassette tapering

Results prompted mechanical interventions for improving cassette stability

Repeatability issues – Mechanical interventions

Pre-load increase in cassettes' linear guides

Torque increase in wedge screw (4 Nm \rightarrow 15 Nm)

Measurement and correction for gap between cassettes (± 0.025 tolerance)

Assembly procedure standardization, including shims on linear guides

New assembly device including shims

Mechanical interventions results

Block holding clamps screw change

0

Z [mm]

200

400

All cassettes

or

Only upper cassettes

Longitudinal blocks

or

Vertical blocks

or

All blocks

Mean shim value among all phases closer to 0.05 steps

and

Calculated iteration Measured after iteration (or initial)

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

Calculated iteration Measured after iteration (or initial)

Calculated iteration Measured after iteration (or initial)

Calculated iteration Measured after iteration (or initial)

Calculated iteration Measured after iteration (or initial) Final values (after magic fingers)

Magic fingers correction

Magic fingers assembly after optimization through simulated annealing

Final Characterization

Intermediate low-K phases found to be less optimized with respect to phase error.

Feedforward correctors integrals (10 A):

Hor.: 452 G·cm (in) and 452 G·cm (out)

Ver.: 515 G·cm (in) and 506 G·cm (out)

Storage ring installation

Thank you

Lucas Henrique Francisco lucas.francisco@cnpem.br

Some references

For Sirius:

L. Liu, M. Alves, A. C. Oliveira, X. Resende, e F. De Sá, "Sirius Commissioning Results and Operation Status", Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 6 pages, 1.540 MB, 2021, doi: 10.18429/JACOW-IPAC2021-MOXA03.

For the Delta Sabiá Undulator:

L. Vilela et al., "Status Report of Sirius Delta Undulator", IEEE Trans. Appl. Supercond., vol. 32, n° 6, p. 1–5, set. 2022, doi: 10.1109/TASC.2022.3160941.

