

Topical Workshop on Emittance Measurements for Light Sources and FELs

ALBA Synchrotron, January 29-30, 2018

High Resolution Scintillating Screens for Measurements of few Micrometer Beams

Gero Kube

DESY (Hamburg)

- Introduction
- Spatial Resolution for different Scintillators
- Influence on Observation Geometry
- Measurement of few Micrometer Beam
- Scintillator Non-Linearity
- (Comments on Digital Camera Systems)

OTR Transverse Beam Profiling

HELMHOLTZ =

- Optical Transition Radiation (OTR) for beam diagnostics
 - backward OTR: reflection of virtual photons
 - → instantaneous process
 - single shot measurement
 - full transverse (2D) profile information
- Coherent OTR observation at LCLS (SLAC)

R. Akre et al., Phys. Rev. ST Accel. Beams 11 (2008) 030703

H. Loos et al., Proc. FEL 2008, Gyeongju, Korea, p.485.

• OTR 12

20 20 40 60 20 40 60 20 40 60

measured spot is no beam image!

OTR 22

- strong shot-to-shot fluctuations
- doughnut structure
- change of spectral contents
- interpretation of coherent formation in terms of "Microbunching Instability"

E.L. Saldin et al., NIM A483 (2002) 516 Z. Huang and K. Kim, Phys. Rev. ST Accel. Beams 5 (2002) 074401

- alternative schemes for beam profile diagnostics
 - stochastic radiation emission (destruction of coherence)

multi-stage emission process

Scintillation Light Generation

A.N. Vasil'ev, Proc. SCINT'99, Moscow (Russia), 1999, p.43

- multi-stage process
 - energy conversion

→ generation of "hot" electronic excitations

thermalization

 \rightarrow phonon emission: transform E_{kin} of excitations in heat

localization

- → excitation interaction with defects/impurities
- transfer to luminescent centers -
 - → migration of relaxed excitons

radiative relaxation

→ emission of scintillation light

Scintillators for Beam Diagnostics

- review of scintillators for beam profile measurements
 - phosphor screens: P11 (ZnS:Ag), P20 ([Zn,Cd]S:Ag), P43 (Gd₂O₂S:Tb), ...
 - \rightarrow decay times O(ms), resolution limited by grain size
 - ceramic screens: Chromox (Al₂O₃:Cr)
 - → higher radiation hardness, better thermo-mechanical properties, lower light yield
 - inorganic scintillators: CsI:Tl, YAG:Ce → "high resolution monitor" W.S. Graves et al., Proc. PAC'97 (1997) 1993
 - → better resolution, higher light yield than Chromox
 - status in 2003: R. Jung et al., Proc. DIPAC2003, IT03, p. 10
- scintillators for beam diagnostics
 - heavy ion accelerators → standard for beam profile measurements (typically ceramic screens)
 - ▶ electron accelerators → powders/inorganic scintillators used for gun diagnostics (OTR intensity to low)
 - DIPAC invited talk 2007 → E. Bravin, "High Resolution Transverse Profile Measurement", Proc. DIPAC2007, p.1
 - → scintillators for high resolution even not covered...
- COTR problem at LCLS in 2008
 - return to scintillator based beam profile diagnostics @ FELs
 - → Workshop on "Scintillating Screen Applications in Beam Diagnostics" @ GSI, February 2011
 - B. Walasek-Höhne, C. Andre, P. Forck, E. Gütlich, G. Kube, P. Lecoq, and A. Reiter, IEEE Trans. Nucl. Sci. 59 (2012) 2307

Scintillators for Beam Diagnostics (2)

- requirements for beam diagnostics application
 - high spatial resolution → material property
 - high sensitivity → high stopping power, material property
 - good linearity short decay time, material property
 - radiation resistant inorganic scintillators widely used in high energy physics, dosimetry,...

- light generated inside scintillator has to cross boundary
 - refractive index
- inorganic scintillotors: large n
 - large contribution of total reflection
 - influence on observation geometry

- high energy physics (calorimtery), medical physics (PET imaging, ...)
 - → BGO, YAP, LuAG, LuAP, YAP, LSO, LYSO, GGAG, LaCl₃, LaBr₃, SrI₂, ...

why only YAG:Ce?)

Test Experiments

Mainz Microtron MAMI

Institute of Nuclear Physics, University of Mainz (Germany)

3 cascaded Racetrack Microtrons: $E_{max} = 855 \text{ MeV}$ double-sided Microtron (HDSM): $E_{max} = 1.5 \text{ GeV}$

100 % duty cycle

polarized electron beam (~ 80%)

- test experiments in X1 beamline
 - target chamber with goniometric stages
 - observation geometry-22.5° w.r.t. beam axis

target holder

Institut für

Spatial Resolution

experiment 2009

- **▶** BGO 0.5 mm
- **PWO** 0.3 mm
- > LYSO:Ce 0.8 mm, 0.5 mm (Prelude 420)
- YAG:Ce 1.0 mm, 0.2 mm, powder
- \rightarrow Al₂O₃ 1.0 mm (ceramic)

experiment 2011

- **BGO** 0.3 mm
- > LYSO:Ce 0.3 mm (Prelude 420, CRY-19)
- YAG:Ce 0.3 mm
- LuAG:Ce 0.3 mm
- > YSO:Ce (?) 0.3mm (CRY-18)

G. Kube et al., Proc. IPAC'10, Kyoto (Japan), 2010, p.906

G. Kube et al., Proc. IPAC'12, New Orleans (USA), 2012, p.2119

LYSO:Ce best spatial resolution

Observation Geometry

- beam diagnostics
 - → popular OTR-like observation geometry:

45° tilt of screen observation under 90°

 \rightarrow turns out to be bad!

• scintillator tilt versus beam axis

BGO crystal micro-focused beam I = 3.8 nA

measured beam spots

Comparison

- light propagation in scintillator
 - imple ZEMAX model → light generated by line source, scintillator characterized by n

- satisfactory agreement between simulation and measurement
 - → simulation reproduces observed trend in beam size
- measured beam size systematically larger than simulated one
 - \rightarrow effect of scintillator material properties not included in calculation \rightarrow increase in PSF

G. Kube, C. Behrens, and W. Lauth, Proc. IPAC 2010, Kyoto, Japan, p.906.

Observation Geometry Influence

Exploring the Resolution Limits

micrometer beam size experiment at MAMI

G. Kube, S. Bajt, A.P. Potylitsyn, L.G. Sukhikh, A.V. Vukolov, I.A. Artyukov, W. Lauth, Proc. IBIC2015, Melbourne, Australia, p.330

> experimental scheme

a = 27.54 mm

b = 1155.46 mm

 \rightarrow M = 41.95

Target: LYSO scintillator $(Lu_{2(1-x)}Y_{2x}SiO_5:Ce)$

thickness $t = 200 \mu m$

supplier: OmegaPiezo

Schwarzschild Objective:

f = 26.90 mm

NA = 0.19 (nominal)

Micrometer Beam Size Measurement

measured beam image

- horizontal beam profile
 - → affected by OTR-like 90° observation geometry
- vertical beam profile
 - → affected by depth-of-focus
 - restricti

restriction: analysis only along vertical cut

analysis: scintillator model in Zemax[©]

- → light emission from single electron represented by line source in LYSO crystal with isotropic light emission
- \rightarrow scintillator properties described by n(λ)
- → Schwarzschild objective replaced by paraxial lens with same f and appropriate NA
- \rightarrow non-sequential ray tracing for 10⁸ rays at LYSO peak emission wavelength $\lambda = 420 \text{ nm}$
 - → single particle resolution function (SPF)
- → SPF convolution with 2D-Gaussian (beam profile)
- → vertical cut and comparison

Sensitivity - Parameter Influence

beam size

affects central part of distribution

numerical aperture

> affects tails of distribution

resolution improvement

individualcontributions

Conclusion and Outlook

- search for high resolution scintillator materials
 - > suitable candidate: LYSO:Ce
- influence on observation geometry
 - > considerable influence on spatial resolution
 - basic understanding in frame of geometrical light propagation
- micrometer beam size measurements
 - micrometer beam size measured with 200 μm thick LYSO:Ce scintillator
 - analysis requires knowledge of Single Particle Function (SPF)
 - better sensitivity for thinner crystals
- XFEL screen monitors: perturbed beam profiles
 - measured emittance values larger than expected
 - assumption: scintillator effect
 - → caused by high *ionization track denisty* due to *primary beam density*
 - → quenching of excitation centers
 - > search for better scintillator materials
 - → next weekend : beam test at XFEL

e/y-Response of Scintillators

- scintillators used for γ -ray beam profile measurements
 - \rightarrow X-ray converter for CCDs \rightarrow e.g. for pinhole camera
 - difference in scintillator response between *electrons* and *photons*?
- electron response
 - collisional stopping power
 - → several small interactions
 - → mainly with outer shell electrons

- photon response
 - photo effect
 - → single interaction, predominantly with inner shells
 - → complex cascade structure

B.D. Rooney and J.D. Valentine, IEEE Trans. Nucl. Sci. 44 (1997) 509

smooth electron response

photon response with substructure

Topical Workshop on Emittance Measurements for Light Sources and FELs

ALBA Synchrotron, January 29-30, 2018

Comments on Digital Camera Systems for Beam Diagnostics Applications

Gero Kube

DESY (Hamburg)

- Charge-Coupled Devices (CCD)
- CMOS Imaging Sensor (CIS)
- Sensor Performance Study

CCD Working Principle

- image generation with CCD: 4 stage process
 - charge generation

charge collection

charge transfer

> charge measurement

- charge generation & collection: fundamental light-sensing unit
 - > metal oxide semiconductor (MOS) capacitor
 - operated as a photodiode and storage device
 - photo effect: conversion of incoming photons into charge
 - reverse bias operation
 - → electrons migrate to area underneath positively

 charged gate electrode (well capacity: 1000-2000 e⁻/µm²)

https://www.microscopyu.com

• charge transfer

> CCD sense element (pixel) structure

https://www.microscopyu.com

- → line array of pixels forms transfer register
- → transfer of charge packets
 according to voltage applied
 to the gate terminals
- → requires overlap of depletion region in transfer direction

https://www.elprocus.com/know-about-the-working-principle-of-charge-coupled-device/

CCD Working Principle (2)

• charge transfer (cntd.)

- > CCD array is series of column registers
 - → charge kept within rows by channel stops
- > end of each column: horizontal shift register
 - → collects a line at a time
 - → transports charge packets in serial fashion to output amplifier
 - → entire horizontal register has to be clocked out before next line enters
 - → requires separate horizontal (fast) / vertical (slow) clocks
- > gate voltages ~8...15 V required for creation of depletion wells
 - \rightarrow rapidly turn on/off for charge transport \rightarrow high power consumption

water bucket analogy:

www.sony.com/professional

• charge measurement

- > n⁺: floating diffusion or sense node
 - → region in active silicon (diffusion) region, electrically isolated
 - → potential determined by the amount of stored charge and capacitance
- Sense FET: *source follower* configuration (impedance transformation)
 - \rightarrow buffers poor voltage source (high R_i) into nearly ideal one (low R_i), $A\sim 1$
- Correlated Double Sampling (CDS): measure after reset & charge dump + subtract
 - → reduce signal fluctuations

https://www.ll.mit.edu/mission/electronics/ait/hisensitivityimage.html

CMOS Working Principle

- CMOS : Complementary Metal-Oxide-Semiconductor
 - > well established technology for constructing integrated circuits
 - \rightarrow evolved to smaller circuit sizes \rightarrow lower power consumption
- CMOS Imaging Sensor (CIS): active pixel sensor most popular design
 - photodiode and readout amplifier incorporated into each pixel
 - → CIS contains analogue and digital components
 - > accumulated *charge* converted into *voltage* inside pixel
 - voltage conversion similar to CCD
 - → source follower & voltage signal amplification (otherwise too small to be transferred)
 - if pixel selected
 - → pixel readout via external readout circuitry

pixel architecture

- > 3T(ransistors): Reset, Source Follower, Select
 - → small pixels, for consumer market (cell phone,...)
 - → *rolling shutter* (problems with moving object)
- > 4T: ...+ Transfer Gate TX (and Floating Diffusion)
 - → higher sensitivity (smaller C) & lower noise (CDS)
 - → *global shutter* (allows snapshots)

https://www.olympus-lifescience.com/en/microscope-resource/primer/

R. Coath et al., Advanced Pixel Architectures for Scientific Image Sensors, 2009

CMOS Working Principle (2)

CIS structure and readout

- each pixel (a)
 - → amplified voltage signal
- pixel-select switch (e, Select Transistor) turned on
 - → outputs amplified voltages of all pixels in selected row (j) to their respective column circuit (h, sample & hold)
 - → slow speed parallel readout
- column-select switch (g) turned on from left to right
 - → signal voltages of each pixel in row are read out
 - → high speed serial readout
- repeat operation for all rows from top to bottom

www.sony.com/professional

consequences

- voltage transfer
 - → faster than charge transfer in CCDs (~ 100 fps vs. 20 fps)
- windowing
 - \rightarrow readout of sub-structures \rightarrow even faster readout

reduced fill factor(amplifier on CIS)

→ micro-lenses

http://micro.magnet.fsu.edu/primer/

Comparison CCD versus CMOS

mechanisms of CCD and CMOS image sensors

image sensor performance

Photonics Spectra, Issue January 2001

- responsitivity speed
- dynamic rangewindowing
- uniformityantiblooming
- shutteringbiasing & clocking

better image sensor type ???

Sony announced in March 2015 that it was discontinuing its entire line of CCD sensors...

camera architecture

CCD

> CMOS

Photonics Spectra, Issue January 2001

Digital Camera Interfaces

• various interfaces in overview

Interface	Cable length	Band width maximum in MB/s.	Multi- camera	"Real- time"	"Plug & Play"
USB 2.0	5m	40			
FireWire	4.5m	64			
GIG=	100 m	100			
US3° VISION	8 m	350			
Link	10 m	850			

Basler White Paper1505, www.baslerweb.com

Testing Camera Performance

physical camera model

A number of **photons** ...

... hitting a pixel during exposure time ...

... creating a number of electrons ...

.. forming a charge which is converted by a capacitor to a voltage ...

... and **digitized** ...

42

... resulting in the digital gray value.

mathematical model of single pixel

EMVA Standard 1288, Release 3.1, Release Candidate (2012), www.emva.org

• mathematical model: validity

- > amount of photons depend on radiative energy density
- sensor linearity (valid for $\lambda > 400$ nm)
- noise sources are stationary and white
- only total quantum efficiency depends on λ
- only dark current depends on temperature

Photon Transfer Method

- basic assumptions
 - number of photons/electrons: stochastic values
 - → charcterization by mean/variance

mean number of photons:

 $\mu_p = \sigma_p^2$

mean number of electrons:

 $\mu_e = \eta \mu_p$

- CCD output
 - grey value y
 - \rightarrow unit DN (digital number)
 - simplification
 - \rightarrow neglect quantization noise σ_q

sensor/camera

(Poisson distributed)

 $\sigma_e^2 = \mu_e = \eta \mu_p$

$$\mu_y = K(\mu_e + \mu_d) = K \eta \mu_p + \mu_{y,dark}$$

$$\sigma_y^2 = K^2(\sigma_e^2 + \sigma_d^2) = K(\mu_y - \mu_{y,dark}) + \sigma_{y,dark}^2$$

input

Photon Transfer Method

- measurement
 - $\mu_{\rm v}$, $\sigma_{\rm v}^2$ as function of $\mu_{\rm p}$

output

PT Measurements

- \bullet CCD under test \rightarrow Basler Aviator avA1600-gm
 - for each exposure time (μ_p) : take 10 images
 - > select ROI: 50 x 50 pixels
 - \rightarrow determine mean gray value and noise variance: μ_{y} , σ_{y}^{2}
- analysis

results

overall system gain

$$K = 0.1793 \text{ DN/e}^{-1}$$

$$\rightarrow$$
 K⁻¹ = 5.6 e⁻/DN

▶ QE @ 470nm

$$K~\eta=0.0802$$

$$\rightarrow \eta = 0.447$$

dark noise

$$\sigma^{2}_{y,dark} = (5.093 \text{ DN})^{2}$$

$$\rightarrow \sigma_{d} = 12.6 \text{ e}^{-}$$

EMVA 1288 data sheet

Item	Symbol	Typ. ¹	Unit
Temporal Noise Parameters			
Total Quantum Efficiency (QE)	η	40	%
Inverse of Overall System Gain	$\frac{1}{K}$	4.8	$\frac{\mathrm{e^{-}}}{\mathrm{DN}}$
Temporal Dark Noise	σ_{d_0}	11	e ⁻
Saturation Capacity	$\mu_{e.\mathrm{sat}}$	18500	e ⁻

www.baslerweb.com

(QE @ 545 nm)

Signal-to-Noise Ratio

- measure for signal quality
 - usually in logartithmic representation

$$SNR_y(\mu_p) = \frac{\mu_y - \mu_{y,dark}}{\sigma_y} = \frac{\eta \mu_p}{\sqrt{\eta \mu_p + {\sigma_d}^2}}$$

$$ld(SNR_y) = ld(\eta) + ld(\mu_p) - \frac{1}{2}ld(\eta\mu_p + \sigma_d^2)$$

• ideal sensor: $\eta = 1$, $\sigma_d = 0$

$$ld(SNR_y) = \frac{1}{2} ld(\mu_p)$$

pure shot noise from photons, i.e. $SNR_y = \sqrt{\mu_p}$

- limiting cases
 - \rightarrow shot noise dominated: $\eta \mu_p \gg \sigma_d^2$

$$ld(SNR_y) = \frac{1}{2}ld(\mu_p) + \frac{1}{2}ld(\eta)$$

• dark noise dominated: $\eta \mu_p \ll \sigma_d^2$

$$ld(SNR_y) = ld(\mu_p) + ld(^{\eta}/_{\sigma_d})$$

• intersection with $SNR_y = 1$:

Signal-to-Noise Analysis

- CCD under test
- → Basler Aviator avA1600-gm
- > same data set as before

• dynamical range (DR) and saturation (ST)

7.5

7.1

• from intersection with ld(SNR) axis \rightarrow SNR = 1

Total Quantum Efficiency (QE)

15.5

 $\log_2(N_{phot})$ / bit

15.6

15.7

15.8

 $\mu_{p,min} = \sigma_d / \eta = 30.6$

maximum number of photons

$$\mu_{p,sat} = 2^{15.52} = 46988$$

 $\lambda = 545 \,\mathrm{nm}$