<u>OSIRIS</u>

in-Operando Spectroscopy and Resonant Inelastic Scattering beamline at ALBA

Proposer Team: S. Blanco-Canosa (DIPC), A. Johnson (IMDEA), G. Subias (UNIZAR),

Javier Herrero (ALBA), J. Fontcuberta (ICMAB)

Contributors: Enrique Garcia Michel, Gervasi Herranz, Jordi Fraxedas, Amilcar Bedoya, Adriana Figueroa,

Sara/Lafuerza, Rosa Palacín, Manuel Valvidares

Outline

- What is Resonant Inelastic X-ray Scattering (RIXS)
- Science highlight
- Why a new RIXS line is required
- Why a long beamline for RIXS is needed
- Possibilities for the Spanish community

J Schlappa Nature 2012

RIXS: Resonant Inelastic x-ray Scattering

L Ament Review of Modern Physics 2011

Resonant: ω_i at an absorption edge

• element specific

(In)elastic: energy loss spectroscopy

- Probed excited states (0.01-10 eV)
- ... and ground states
- Complementary to Raman and Neutrons

X-ray scattering: photon in/photon out

- neutral excitations
- momentum resolution
- The best way to look at electrons and their dynamics
- RIXS is helping to solve many questions in physics and chemistry

Excitations in quantum materials

Dispersive magnetic excitations in superconductors

Cuprates CuO₂ planes T = 15 K, Q_{II} = 0.37 r.l.u. AF NdBCO₆ AF NdBCO₆ Milti-magnon peak Phonons Background Milti-magnon peak Phonons Background Magnetic excitation Background Magnetic excitation Background Milti-magnon peak Phonons Background

Electron phonon interaction

EPI in QM, thermoelectrics, solar cells

L. Chaix et al Physical Review B 2018
M. LeTacon et al., Nature Physics 2011
WS Lee Nature Physics 2014
MPM Dean Nature Materials 2013
MPM Dean Physical Review Letters 2013
L Chaix Physical Review B 2018

Batteries

Robert A House Nature 2020 Robert A House Nature Energy 2021 J Wu Dalton Transactions 2020

RIXS unveiled the formation of O superstructures and lithiation process during the charging-discharging cycles of Li batteries

Catalysis

- Oxygen evolution for a graphene supported Ni₃MnO₄ catalyst.
- Nature of the active cobalt sites for hydrogenolysis

YS Liv Journal of Electron Spectroscopy and Related Phenomena 2015 M Al Samarai Applied Materials and Interfaces 2019 L van Haandel ACS Catalysis 2020 Physics/chemistry of materials fuels the progress of humanity >>>>>>> RIXS ideal tool to study those materials

RIXS spectrometer

- Energy range: 300-2500 eV
- Beamline polarization: LH, LV, C+/C-

Resolving power: 40.000. Total energy resolution: 25 meV

at 930 eV, 14 meV at 530 eV.

- Focal beam: 50 (H) x 3 (V) um².
- Sample enviroment: solid state, liquids,
 6-axis manipulator
- Temperature: 10-400 K
- Scattering angle: 40 < 2th < 150°
- Polarization analysis.

Why a new RIXS beamline is required

- RIXS users increase continuously
- Only few high resolution beamlines (ESRF, DIAMOND, NSLS)
- Highly demanding technique (beamlines are over subscribed by a factor of 4-5). Highly competitive!!!
- All producing very high impact papers
- Address the challenges of the Spanish (and international) research community (50 groups)
- RIXS instrument will enhance the strength of a multi-modal program together with ARPES, XMCD, TEM-EELS at ALBA

Why a new RIXS beamline is required

Why a long beamline for RIXS is needed

Key driving force of RIXS – energy resolving power, $E/\Delta E$

High resolution – small bandwidth

High photon flux (10¹⁴-10¹⁵ ph/s)

Long undulator: for instance 5 m APPLE II at ID21

Minimized number of optics

Long beamline (80 m)
Long spectrometer (15 m)
Very high quality optics

Extremely stable mechanics (Vibrational stability)

Good termal and floor stability

Possibilities for the Spanish community

- In operando conditions for materials for energy conversión/storage
- By enabling the electric and magnetic field RIXS could uncover new physics in many exotic systems
- RIXS can be combined with microscopy for studying electronic inhomogeneities (micro beam size)
- Study of surfaces, interfaces, and bulk electronic structure of novel inorganic and organic systems

Possibilities for the Spanish community

- Quantum materials (DIPC, ICMAB, IFIMAC, IMDEA)
- Functional materials: thin films and superlattices (UCM, USC, UNIZAR, ICMAB), micro/nanodevices (Nanogune, ICMOL)
- Energy: batteries (UAM, ICMAB), catalysis (CFM), fuel cells, solar cells, electro(baro)caloric materials (INMA)
- Chemistry: catalysis (ITQ, CFM, ICP) and reactivity

Thank you!