
UFO, a GPU Code Tailored Toward MBA Lattice
Optimization

M.Carlà, M.Canals
ALBA-CELLS Synchrotron, 08290 Cerdanyola del Vallès, Spain

Jun 2022

The lattice design and optimization process

Starts with a brilliant idea...

The lattice design and optimization process ...part 2

Ends with brute force optimization

PhDs struggling with
 DA optimization

They got
almost 3mm

Not even one turn

I A complicated lattice has many parameters
I High dimensionality optimization problems are not human friendly!
I The optimization phase can be a very long, intensive and frustrating process...

Optics optimization process

 0

 100

 200

 300

 400

 500

4ba 5ba 6ba 7ba

E
m

it
ta

n
ce

 [
p
m

]

Bends #

k1: 10 m-2, k2: 1e3 m-3

1. Optimize arc targeting: εx , αc , ψx,y

2. Add matching triplet and mutate randomly the arc until closed solutions are found

3. Optimize the entire ring targeting: εx , DA, lifetime, αc

Bend Antibend

Matching triplet Horizontal sextupole

Vertical sextupole

Dispersion suppressor

Lattice optimization for ALBAII

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

D
y
n
a
m

ic
 a

p
e
rt

u
re

 [
A

.U
.]

Iteration

I A random walk is used to optimize the optics parameters: magnets length, strenght...

I The optimization metrics is function of D.A., β-functions at ID...

I How to compute ∼ 106 solutions in ∼ 1 day?

Introducing UFO

I A few % error in the computation of D.A. can be tollerated
I GPU fits very well single particle tracking
I Other GPU tracking codes already exists 1, but not optimized for electron ring
I UFO is not only pure tracking it also does closed orbit and some linear optics
I UFO is written in with a mixture of Python and OpenCL
I UFO can run on CPU and GPU
1

https://github.com/SixTrack/sixtracklib

CPU & GPU

I CPU: A lot of effort into optimizing program flow execution (Branch-prediction, Out of order execution...)

I CPU: Lots of space dedicated to stuff we don’t use for tracking!

I GPU: Lots of small arithmetic cores driven in parallel by a single instruction fetch/decode unit

I GPU: no branch-prediction/out of order execution. ← we don’t need this for tracking!!

I GPU programs must fulfill very strict criteria to perform well! ← programming GPUs is an ...interesting experience

CPU vs GPU

I In a CPU cores are ∼independent

I Each core can run run his own program

I Each core can operate over different data

I Tens of cores at maximum

I In a GPU the same instructions feed a group of cores

I However, each core operate on different data

I A GPU can have a few to 100 groups of 64 to 128 cores

I Thousands of cores

Tracking through a ring fits well GPUs architecture: many particles move
throught the exact same succesion of elements

UFO is not relativisticaly correct

I Relativistic effects couple in a non-linear way the transverse motion

I Relativistic integrators (such as the one used in PTC) are slow!

-10.0 -5.0 0.0 5.0

x [mm]

10.0

7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

y
 [

m
m

]

10.0

I Electrons stable or unstable with both integrators are shown as red or blue markers

I Yellow and black electrons are stable for one integrator but unstable for the other

I Difference is a few %

UFO use limited precision computations

I Scientific codes tend to use double precision floating point variables (64 bit)

I 64 bit variables are 2 times bigger than 32 and a few times slower

0 20000 40000 60000 80000 100000
Turn #

8.1

8.2

8.3

8.4

8.5

8.6
Am

pl
itu

de
 [u

m
]

GPU: 32 bit
GPU: 64 bit

I In a long term tracking the loss of symplecticity is clearly visible for a 32 bit integrator

I 32 bit in GPU 6= 32 bit in CPU: GPU does not follow ieee 754

I GPU are usually less precise...

Symplecticity loss with 32 bit variables

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x [mm]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y
 [

m
m

]

I Electrons stable or unstable with both integrators are shown as red or blue markers

I Yellow and black electrons are stable for one integrator but unstable for the other

I Difference is a few %

Benchmarking some hardware

I To test performances 4 different machine were selected

I Some high and low-end GPUs and CPUs were selected

Base clock Cores
Intel i5-8400 2.8 GHz 6
Intel Xeon Gold 6136 3.0 GHz 24
Nvidia Quadro P600 1329 MHz 384
Nvidia Tesla T4 585 MHz 2560

I The test aims to find the optimal number of parallel threads for GPUs

I On a CPU the best performances is met when # of threads = # of cores

I OpenCL does not allow to change easily the number of thread on CPU
(don’t know why)

Benchmarking: Were is the gain?

101 102 103 104

Parallel threads #

102

103

104

P
a
rt

ic
le

s
/

s

i5 Xeon P600 T4

64 bit

32 bit

````

101 102 103 104

Parallel threads #

102

103

104

C
lo

se
d
 o

rb
it

 /
 s

i5 Xeon P600 T4

64 bit

32 bit

I Tracking and closed orbit computation shows very similar behaviour

I To achieve good performances on GPU enough threads must be run in parallel
(a few times the number of cores)

I Performances gain respect to a CPU is ∼one order of magnitude



Conclusions and outlook

UFO is a tracking code developed from scratch with
electron ring optimization in mind:

I Some physics and numerical approximation improve dramatically tracking performances

I Those approximations are acceptable in the initial design phase of an electron ring

I A single high-end GPU can achieve same performances of a small/medium class cluster

UFO is under active development:

I Fast linear optics matching

I Higher order integrators

I Full 6D simulations with RF and radiation





UFO has an unconventional interface...

I To achieve good performance the GPU must be under constant load
I Tracking 1000 particles is not enough to saturate a GPU

Generate an OpenCL
representation of the
lattice (pass method)

User inputs the list of
simulation parameters User inputs

 a MAD-X
style lattice

 The pass method is embedded in an
OpenCL function to solve a specific task
 (e.g. DA, closed orbit...)

The kernel is compiled for a
 specific back-end
 (e.g. GPU, CPU)

The code is executed and
 data returned

User inputs 
parameters
value

Results

I Different optics variations can be simulated in parallel
I Optics parameters (field strength, element lengths...) can be specified per-particle
I Element order must be kept the same



Dynamic aperture on a grid

 10

 20

 30

 40

 50

 60

 70

 16  64  256  1024  4096  16384

S
ta

b
le

 a
re

a
 [

%
]

# Particles

Alignment error: 20.0 um
Alignment error: 50.0 um

Alignment error: 100.0 um

I A grid of N particles is tracked through the ring with a given set of errors (1000 turns)
I The error are chenged and the tracking repeated 100 times
I Points are the average + std of the 100 DA evaluations
I Strong systematic error for small number of particles



Dynamic aperture with random sampling

10

20

30

40

50

60

70

80

16 64 256 1024 4096 16384

20um errors

50um errors

100um errors

S
ta

b
le

 a
re

a
 [

%
]

# Particles

Random sequence

Binomial

I Particles coordinates are generated randomly (uniform distribution)

I Each particle has a different set of errors (each particle → different machine)

I No systematic errors, but the error bars are bigger (noise in particles initial conditions)

I 1024 particles, 100um errors → Average DA error: 1.32%



Dynamic aperture with halton sampling

I Random initial conditions increase the overall estimator noise

I A Halton sequence is uniformly distributed and kind of random ...but not too random



Halton sampling (Red curve)

 10

 20

 30

 40

 50

 60

 70

 80

 16  64  256  1024  4096  16384

20um errors

50um errors

100um errors

S
ta

b
le

 a
re

a
 [

%
]

# Particles

Random sequence
Halton sequence

Binomial

I Limited systematic error and much smaller random fluctuations

I 1024 particles, 100um errors → Average DA error: 0.94%



Counting turns instead of lost particles

 0.1

 1

 10

 16  64  256  1024  4096  16384

15%

S
ta

b
le

 a
re

a
 [

%
]

# Particles

Lost particles count
Sum over turns

I Up to now DA was evaluated by looking at the number of survived particles

I Similar information is obtained by summing the total amount of turns

I A 15% reduction of the DA evaluation error is obtained

I 1024 particles, 100um errors → Average DA error: 0.80%


