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The lattice design and optimization process

Starts with a brilliant idea...



The lattice design and optimization process ...part 2

Ends with brute force optimization

PhDs struggling with
               DA optimization

They got
almost 3mm

Not even one turn

I A complicated lattice has many parameters
I High dimensionality optimization problems are not human friendly!
I The optimization phase can be a very long, intensive and frustrating process...



Optics optimization process
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Bends #

k1: 10 m-2,  k2: 1e3 m-3

1. Optimize arc targeting: εx , αc , ψx,y

2. Add matching triplet and mutate randomly the arc until closed solutions are found

3. Optimize the entire ring targeting: εx , DA, lifetime, αc

Bend Antibend

Matching triplet Horizontal sextupole

Vertical sextupole

Dispersion suppressor



Lattice optimization for ALBAII
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Iteration

I A random walk is used to optimize the optics parameters: magnets length, strenght...

I The optimization metrics is function of D.A., β-functions at ID...

I How to compute ∼ 106 solutions in ∼ 1 day?



Introducing UFO

I A few % error in the computation of D.A. can be tollerated
I GPU fits very well single particle tracking
I Other GPU tracking codes already exists 1, but not optimized for electron ring
I UFO is not only pure tracking it also does closed orbit and some linear optics
I UFO is written in with a mixture of Python and OpenCL
I UFO can run on CPU and GPU
1

https://github.com/SixTrack/sixtracklib



CPU & GPU

I CPU: A lot of effort into optimizing program flow execution (Branch-prediction, Out of order execution...)

I CPU: Lots of space dedicated to stuff we don’t use for tracking!

I GPU: Lots of small arithmetic cores driven in parallel by a single instruction fetch/decode unit

I GPU: no branch-prediction/out of order execution. ← we don’t need this for tracking!!

I GPU programs must fulfill very strict criteria to perform well! ← programming GPUs is an ...interesting experience



CPU vs GPU

I In a CPU cores are ∼independent

I Each core can run run his own program

I Each core can operate over different data

I Tens of cores at maximum

I In a GPU the same instructions feed a group of cores

I However, each core operate on different data

I A GPU can have a few to 100 groups of 64 to 128 cores

I Thousands of cores

Tracking through a ring fits well GPUs architecture: many particles move
throught the exact same succesion of elements



UFO is not relativisticaly correct

I Relativistic effects couple in a non-linear way the transverse motion

I Relativistic integrators (such as the one used in PTC) are slow!
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I Electrons stable or unstable with both integrators are shown as red or blue markers

I Yellow and black electrons are stable for one integrator but unstable for the other

I Difference is a few %



UFO use limited precision computations

I Scientific codes tend to use double precision floating point variables (64 bit)

I 64 bit variables are 2 times bigger than 32 and a few times slower
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GPU: 32 bit
GPU: 64 bit

I In a long term tracking the loss of symplecticity is clearly visible for a 32 bit integrator

I 32 bit in GPU 6= 32 bit in CPU: GPU does not follow ieee 754

I GPU are usually less precise...



Symplecticity loss with 32 bit variables
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I Electrons stable or unstable with both integrators are shown as red or blue markers

I Yellow and black electrons are stable for one integrator but unstable for the other

I Difference is a few %



Benchmarking some hardware

I To test performances 4 different machine were selected

I Some high and low-end GPUs and CPUs were selected

Base clock Cores
Intel i5-8400 2.8 GHz 6
Intel Xeon Gold 6136 3.0 GHz 24
Nvidia Quadro P600 1329 MHz 384
Nvidia Tesla T4 585 MHz 2560

I The test aims to find the optimal number of parallel threads for GPUs

I On a CPU the best performances is met when # of threads = # of cores

I OpenCL does not allow to change easily the number of thread on CPU
(don’t know why)



Benchmarking: Were is the gain?
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I Tracking and closed orbit computation shows very similar behaviour

I To achieve good performances on GPU enough threads must be run in parallel
(a few times the number of cores)

I Performances gain respect to a CPU is ∼one order of magnitude



Conclusions and outlook

UFO is a tracking code developed from scratch with
electron ring optimization in mind:

I Some physics and numerical approximation improve dramatically tracking performances

I Those approximations are acceptable in the initial design phase of an electron ring

I A single high-end GPU can achieve same performances of a small/medium class cluster

UFO is under active development:

I Fast linear optics matching

I Higher order integrators

I Full 6D simulations with RF and radiation





UFO has an unconventional interface...

I To achieve good performance the GPU must be under constant load
I Tracking 1000 particles is not enough to saturate a GPU

Generate an OpenCL
representation of the
lattice (pass method)

User inputs the list of
simulation parameters User inputs

 a MAD-X
style lattice

 The pass method is embedded in an
OpenCL function to solve a specific task
 (e.g. DA, closed orbit...)

The kernel is compiled for a
 specific back-end
 (e.g. GPU, CPU)

The code is executed and
 data returned

User inputs 
parameters
value

Results

I Different optics variations can be simulated in parallel
I Optics parameters (field strength, element lengths...) can be specified per-particle
I Element order must be kept the same



Dynamic aperture on a grid
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# Particles

Alignment error: 20.0 um
Alignment error: 50.0 um

Alignment error: 100.0 um

I A grid of N particles is tracked through the ring with a given set of errors (1000 turns)
I The error are chenged and the tracking repeated 100 times
I Points are the average + std of the 100 DA evaluations
I Strong systematic error for small number of particles



Dynamic aperture with random sampling
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I Particles coordinates are generated randomly (uniform distribution)

I Each particle has a different set of errors (each particle → different machine)

I No systematic errors, but the error bars are bigger (noise in particles initial conditions)

I 1024 particles, 100um errors → Average DA error: 1.32%



Dynamic aperture with halton sampling

I Random initial conditions increase the overall estimator noise

I A Halton sequence is uniformly distributed and kind of random ...but not too random



Halton sampling (Red curve)
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I Limited systematic error and much smaller random fluctuations

I 1024 particles, 100um errors → Average DA error: 0.94%



Counting turns instead of lost particles
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Lost particles count
Sum over turns

I Up to now DA was evaluated by looking at the number of survived particles

I Similar information is obtained by summing the total amount of turns

I A 15% reduction of the DA evaluation error is obtained

I 1024 particles, 100um errors → Average DA error: 0.80%


