

Six bend higher order achromat lattice for ALBA-II

Gabriele Benedetti, Michele Carlà, Zeus Martí

27 June 2022 – 3rd LEL Design Workshop

ALBA as today

equipped with 10 ID + 3 Dipole beamlines

ALBA storage ring lattice

Boundary conditions and requirements for the ALBA-II baseline lattice

- Keep existing tunnel: SR with same compact circumference 268 m
- Keep beam energy at 3 GeV
- Existing ID beamlines: preserve 16 cells and source points
- Straight sections at least 4 m long and $\beta_x \approx \beta_y \approx 1-2$ m
- Keep existing injector $\varepsilon_{x^{\text{booster}}} = 10 \text{ nm-rad}$
- Emittance < 300 pm·rad

ALBA is a very compact ring

- 16 cells in 268 m → 16.7 m per cell
- 2 types of straight sections in ALBA: ~8m and ~4m
- In ALBA-II all the straight sections will be 4m
- The space left for magnets/diagnostics/vacuum is 16.7m 4m = 12.7 m

Hybrid 7BA with dispersion bump

In 2019 we started a study for the lattice upgrade based on 16 identical cells. A hybrid 7BA with dispersion bump and paired sextupoles had an emittance ϵ_x = 155 pm·rad.

The limitation of this lattice was the **small dynamic aperture (~1.5 mm) and momentum acceptance** and the **lack of flexibility**.

MBA with distributed sextupoles

In 2020 we changed approach and started a systematic study to find the best MBA for ALBA-II

MBA + anti-bends + distributed sextupoles

G. Benedetti, M. Carlà, U. Iriso, Z. Martí, F. Pérez, "A distributed sextupoles lattice for the ALBA low emittance upgrade", IPAC 2021

A MBA tailored for ALBA-II

- How many bends per cell? Field strengths and magnet length?
- Optimzing all these params is a huge computational task: requires to compute DA and lifetime millions of times

...ideally a fast optics solver and a big computer are required

Strategy to approach the lattice design and optimization

- Developing a light-weight and efficient tracking code (UFO running in GPUs) to speed-up the evaluation of millions of lattices (see Michele Carlà talk and IPAC 2022 ...)
- The chosen baseline lattice has to be not too aggressive in terms of maximum fields, but we have to invest on technical solutions for small magnet-to-magnet gaps
- The chosen baseline lattice has to allow an injection scheme based on well known and tested solutions (off-axis, multipole injection kicker)

Details of a cell

- Injection and ID straights are physically identical, only the setpoints of the triplet are different
- QF and QD are combined function dipoles
 - QD is a weak bend/weak quadrupole
 - QF is a weak antibend/strong quadrupole
- We start the design process with **only two** main families of **sextupoles** (SH, SV)
- Quadrupoles up to 100 T/m
- Sextupoles up to 5000 T/m²

Number of bends and optimization

- **1. Optimize arc** ("6BA block") targeting: ε_x , α_c , $\psi_{x,y}$ (10k iterations)
- 2. Add matching triplet and mutate randomly the arc until closed solution is found
- 3. Optimize the entire ring targeting: ϵ_x , DA, lifetime, α_c , (10k iterations)

The 6BA for ALBA-II

- 16 cells reflecting the current ALBA 4-fold symmetry (quadrant = high beta low beta low beta high beta)
- High β_x sections are used for injection and RF cavities
- Equilibrium emittance: 137 pm·rad
- Energy loss: 843 keV/turn
- Qx /Qy: 43.68 / 11.67, Chromaticity: -94 / -51
- $\alpha_c : 0.8 \cdot 10 4$
- $\beta_{x,y}$ at ID: 2 m

DA and high betas straight sections

- In the 16 identical cells configuration the dynamic aperture is too small to inject (left)
- β_x is increased (2m \rightarrow ~10m) at the injection (4 straights to preserve symmetry) to magnify the horizontal DA (right)
- In both cases only 2 families of sextupoles are used!

Super-bends

- ALBA-II dipoles have ~1T
- Superbend geometry has a direct effect on linear optics (emittance)
- Length and field have been scanned
- The simulation refers to one superbend per cell (16 superbends total) if only 8 superbends are installed the effect is halved!

→ from an optics standpoint 10 cm 3.2 T superpend looks acceptable

Off-axis injection scheme

- The ALBA-II lattice is very dense, all the injection elements should fit in a 4 m dedicated straight section
- The beam from the booster is injected off-axis
- To capture the injected beam, a multipole magnet kicks it to reduce its large oscillations within the DA

DDK: the ALBA-II multipole injetion kicker

A novel topology has been proposed for the coils positions: Double Dipole Kicker

- The DDK field is designed for off-axis injection
- Switching off the 4 outer rods, a dipole field is obtained, useful for on-axis injection during the first turn commissioning and saving a dipole kicker in the injection section
- A prototype of DDK is now under design and will be tested in ALBA (see IPAC 2022 THPOPT047)

Two septa scheme: quad rearrangement

- The required fields and septa thickness are ~ within reacheable values
- To reduce the effort required in the design of such magnets a possibility is to remove a
 quadrupole in each triplet and enlarging the straight section by 30-50cm (this is not
 trivial from a beam dynamics point of view)

	+30cm	+40cm	+50cm
Thin septum field	0.64T	0.55T	0.50T
Thick septum field	1.4T	1.3T	1.1T

- Fields are changed to keep the same injected beam trajectory
- The injection is always at 5 mm from the stored beam

...on going work

MOGA and DA with more than 2 sexts

- Run a first test to optimize 6 families of sextupoles with a genetic algorithm (NSGAII)
 using AT
- Results are promising: horizontal DA can be pushed above 8mm even though a substantial reduction in lifetime is observed

Non-linear optics with 6 sextupole families

- Off-energy DA is considerably reduced causing the drop in lifetime next MOGA will be
- implemented in UFO and a complete study carried out.

...systematic study pending

ALBA vs ALBA-II

	DBA	6BA
Emittance	4.5 <u>nm∙rad</u>	140 pm·rad
Energy	3 GeV	$3~{ m GeV}$
Circumference	268.8 m	268.8 m
Number of cells	8+8	16
Number of straights	4 / 12 / 8	16
Straight lengths	7.8 / 4 / 2.3 m	4.00 m
Straight ratio	36%	24%
Working point	18.15, 8.36	43.68, 11.67
Chromaticity	-39, -29	-94, -51
Mom. Comp. factor	$8.9 \cdot 10^{-4}$	$0.8 \cdot 10^{-4}$
Energy spread	$1.0 \cdot 10^{-3}$	$1.1 \cdot 10^{-3}$
Energy loss per turn	1023 <u>keV</u>	843 <u>keV</u>
Damping times	4 / 5 / 3 <u>ms</u>	3 / 6 / 6 <u>ms</u>

Conclusions

Where are we?

- A **6BA** + reverse bend + HOA lattice has been selected as best candidate for **ALBA-II**, given all the space constraints and engineering limits
- A GPU based code (UFO) was developed on purpose to speed up the optics optimization (<u>see Michele Carlà talk</u>)

Open points:

- An off-axis injection scheme is under design with a novel multipole kicker design (DDK)
- Studies on the impact of field and alignment errors as well as correction schemes are on going
- The effect of operating the optics in **full coupling is beeing investigated** with tests carried out in the ALBA storage ring (see Zeus Martí talk)
- The optimization of the dynamic aperture is still on going
- Magnet-to-magnet gap is a critical parameter! To be confirmed by magnets engineering
- Overall seeking inputs from engineering, vacuum and magnets: many optics parameters need likely rework!

Acknowledgments

Thanks to the ALBA colleagues:

I. Bellafont, C. Biscari, F. Fernández, J.C. Giraldo, T. Günzel, U. Iriso, J. Marcos, V. Massana, R. Muñoz, F. Pérez, M. Pont, P. Rosell, L. Torino...

and the Lattice Review Committee:

M. Aiba, C. Benabderrahmane, R. Brinkmann, S. Di Mitri, L. Lin, R. Nagaoka, P. Tavares

for useful discussions, suggestions and ideas.

Backup slides

Alternative arrangement for sextupole SH

- The one the right (Double-SH) performs slightly better for the ALBA-II 6BA
- Other upgrades (SOLEIL, ALS, BESSY...) use the one on the left (Single-SH)
- No particular reason to prefer one over the other at this stage!

Beam position monitors

- BPMs could be placed in the 10 cm gaps between sextupoles and 7 cm quadrupoles
- Between sextupoles $\beta_x \sim \beta_y$, therefore they should be effective in both planes
- The sextupoles gap can be made slightly larger without too much penalty